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Abstract— As communication technologies develop, an au-
tonomous vehicle will receive information not only from its
own sensing system but also from infrastructures and other
vehicles through communication. This paper discusses how
to exploit a sequence of future information that is shared
among autonomous vehicles, including the planned positions,
the velocities and the lane numbers. A hybrid system model is
constructed, and a control policy is designed to utilize shared
sequence information for making navigation decisions. For the
high-level discrete state transitions, the shared information is
used to determine when to change lane, if lane changing will
bring reward for the autonomous vehicle and there exists a
feasible continuous state controller. For the low-level continuous
state space controller generation, the shared information can
relax the safety interval constraints in the existing model
predictive control method. In the system level, the information
sharing can increase the traffic flow and improve driving
comfort. We demonstrate the advantages of information sharing
in control and navigation in simulation.

Index Terms— Autonomous vehicle, hybrid system, informa-
tion sharing, control policy synthesis.

I. INTRODUCTION

The connectivity between autonomous vehicles has the
potential to significantly improve the perception systems to
have a better sense of traffic. The development of the Ded-
icated Short-Range Communication (DSRC) technology en-
ables Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communications, as stated in the SAE J2735 stan-
dard [3]. The U.S. Department of Transportation (DOT)
has estimated that V2V communication based on DSRC
can address up to 82% of all crashes in the United States
involving unimpaired drivers, potentially saving thousands of
lives and billions of dollars [7]. The 5G technologies might
also enable the access of cloud services and information
sharing among vehicles and infrastructures.

However, existing control frameworks for autonomous
vehicles or Connected Autonomous Vehicles (CAV) mainly
focus on the controller design when a decision about lane
changing or keeping has been provided [4]. For instance,
Adaptive Cruise Control (ACC) [17] and Cooperative Adap-
tive Cruise Control (CACC) system have been designed to
guarantee string stability of the platoon [18]. Cooperation
schemes for two or more scattered vehicles are proposed to
form platoons in a fuel-efficient manner [12]. The plug and
play Model Predictive Control (MPC) method is proposed for
a heavy duty vehicle platoon [5]. Platooning, ACC or CACC
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algorithms only consider longitudinal control without lateral
control for multiple-lanes environment, when a vehicle needs
to change lane to merge into or leave the platoon, continuous
state space controllers are designed assuming lane changing
decisions have already been given [20].

When an autonomous vehicle has additional knowledge,
or gets extra knowledge about the environment based on
V2V communication, how to make tactical decisions such
as whether to change lane or keep lane, what requirements
can be satisfied by the autonomous vehicle are still unsolved
challenges. Furthermore, existing CAVs coordination and
control approaches for scenarios such as cross intersections
or merge lane [19], [10], [15] only consider sharing current
states or Basic Safety Message (BSM), including current ve-
locities and positions, whether sharing future planed velocity
or trajectory can bring benefits remains unclear. Hence, it is
critical to design a control policy that uses shared information
to enhance operation performance for future CAVs, considers
complicated practical environment and safety requirements,
and shows benefits of V2V communication.

In this work, we explore the advantages raised by the
extended sensing capability of autonomous vehicles through
beneficial information sharing. We assume that both cur-
rent and future planning information can be shared among
neighbor autonomous vehicles, and design a tactical de-
cision making rule about when to change lane based on
shared information. A hybrid system model with controllable
switching is constructed to study both the discrete state tran-
sitions and continuous dynamics of an autonomous vehicle.
In simulation, we show that the control policy based on
beneficial information sharing can help increase traffic flow
and provide more comfortable driving experience.

The main contributions of this work are:
• To the best of our knowledge, this is the first work

exploiting sharing a sequence of future information
of autonomous vehicles’ positions, velocities, and lane
numbers in control policy synthesis. The information
shared among autonomous vehicles can be generated
by trajectory planning.

• For the discrete state transitions, the shared information
is used to determine whether it is a good choice to
change lane or not. For the continuous physical state
dynamics, the shared information helps to relax the
safety interval constraints and give more freedom to
select feasible control inputs.

• The information sharing helps to improve driving com-
fort and traffic flow, which are analyzed through simu-
lations.

The rest of this paper is organized as follows. In Section II,
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we introduce the control and information sharing problem for
CAVs considered in this work and a hybrid system model. In
Section III, we develop a control policy synthesis algorithm
to exploit benefits of information sharing in terms of both
discrete state transitions and continuous state controllers. The
simulation results are shown in Section IV with regard to
traffic flow and driving comfort. The conclusions are given
in Section V.

II. PROBLEM DESCRIPTION

The V2V and V2I communications extend the information
gathered by a single vehicle further beyond its own sensing
system. This work explores how to use shared information
to achieve benefits for an ego vehicle (the autonomous
vehicle that we can control). The questions that need to be
answered along this track include what is the information
to be shared, to whom it is shared with, how to use the
information, and what possible benefits could generate. The
first two questions are addressed in this section, and the
rest are addressed in Section III. This section introduces the
shared information considered in this work. Afterwards, a
hybrid system model is defined to describe the discrete sate
transitions and continuous dynamics of an ego vehicle.

A. Information Sharing

Autonomous vehicles are assumed to share information
with their ε-neighbors defined as follows.

Definition 1 (ε-neighbor). One vehicle j is said to be the
ε-neighbor of a vehicle i if | xit − x

j
t |≤ ε, where i and j

are vehicles’ indexes, xit and xjt represent the longitudinal
positions of vehicle i and j at time instant t respectively,
and ε is a constant parameter. The set that includes all the
ε-neighbors of the vehicle i except for i itself is denoted as
Ni(ε). This set is called vehicle i’s ε-neighbors.

In this work, we consider autonomous vehicles driving
on a 3-lane highway. Each autonomous vehicle is expected
to share its current state and future plan, denoted by a
sequence of [xt, xt+1, ..., xt+T ] (positions); [vt, vt+1, ...,
vt+T ] (velocities); [lt, lt+1, ..., lt+T ] (lane numbers, labeled
as 1, 2, 3) to its ε-neighbors. In these sequences, T is an
integer parameter representing the time horizon. According
to the current development of BSM and DSRC security, the
message can be both authenticated and encrypted [7]. Hence,
in this work, we assume that vehicular communication is true
information that is not manipulated by attackers.

Parameter T determines how much future information is
shared. There is a trade-off for selecting T . The larger T
means there is more information shared among autonomous
vehicles which may bring more benefits. However, the com-
munication cost would increase and the information reliabil-
ity may also decrease accordingly. There exist some experi-
ments quantifying the communication delay using WiFi, 4G
and 3G network [8]. Limited to the scope of this work, we
assume that ε and T are given based on the communication
capability, and how to select a better ε and T is one direction
for future work.

B. Hybrid System Model

An ego vehicle is modeled as a hybrid system in Fig. 1.
The influence of behaviors of other vehicles will trigger
different response in the ego vehicle, referred to as different
discrete states of operations such as lane keeping and lane
changing. Specifically, there are three discrete states consid-
ered in this work.

Formally, the model of an ego vehicle is defined below:

Definition 2 (Hybrid System with Controllable
Switching (HSCS)). A HSCS is a collection
H = (Q,X,U, Init, Inv, f,G, δ) where

• Q = {q0, q1, . . . , qn} is a finite set of discrete states.
• X ⊆ RN is a compact set of continuous states.
• U ⊆ RM is a compact set of the control inputs in

continuous space.
• Init ⊆ Q×X is the set of initial states.
• Inv : Q→ X assigns to each q an invariant set;
• f : Q×U×X → X assigns to each q ∈ Q a continuous

vector field f(·, q), a function from X × U to X .
• Gqq′ : Q × Q → X assigns each (q, q′) a guard. A

transition from state q to state q′ is triggered when the
continuous state is within Gqq′ .

• δ: X ×Q→ Q is a switching controller satisfying the
following form:

q(t+) = δ(q(t), x(t)), and x(t+) = x(t),

where the switching controller δ assigns a hybrid system
(q(t), x(t)) into a new discrete state q(t+) when x(t) ∈
Gq(t),q(t+).

In each discrete state, the local subsystem is a continuous
state space model. The continuous state remains the same
given the discrete switching δ. In this system, all switching
is controllable.

Lane
Keeping (1)

Change
Left (2)

Change
Right (3)

𝐺"# 𝐺#" 𝐺"$
𝐺$"

Fig. 1. The hybrid system model for an ego vehicle.

C. Discrete States

1) Lane Keeping: Lane Keeping (LK) is the initial state
of each vehicle. Vehicles drive along the current lane in this
state. The continuous controller will adjust the speed of the
ego vehicle according to the safety interval requirements in
this state, which is introduced in Sec. III-B. For instance,
when the headway cannot support one vehicle’s current speed
vt, it needs to slow down to avoid collision. This could
happen when the ego vehicle is following a front vehicle
or another vehicle merges in front of it.
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2) Change Left & Change Right: In these two states,
the ego vehicle changes to a neighbor lane on its left/right.
Change Left (CL) is symmetric to Change Right (CR). Once
the lane changing decision is made by the decision making
algorithm (as introduced in Sec. III-A), this hybrid system
enters CL/CR sate. The corresponding vehicle will execute
the lane changing maneuver when it enters either state.

D. Continuous States & Control Inputs

The continuous behavior of an ego vehicle is described by
a kinematic bicycle model, as shown in Fig. 2. This model
can achieve a good balance between accuracy and complexity
[6], [9].

𝑋

𝑌

𝜓

𝑣

𝛽
𝛿

Lane centerline

𝐴𝑂

𝐵

𝑥(𝑡)

𝑦(𝑡)
𝑙0

𝑙1

Fig. 2. Kinematic bicycle model attached to the lane center line.

Point A represents the two left and right front wheels,
while the rear two wheels are represented by point B.
Point O is the Center of Gravity (CoG). The lengths of
the line segments OA and OB are represented by lf and
lr respectively. The δ is the steering angle for the front
wheels. The planar motion of this vehicle is described by
three coordinates: x, y and ψ. (x, y) is the location of the
CoG, and ψ illustrates the orientation of the vehicle. The
X-axis represents the lane center line. The v is the velocity
at the CoG and the slip angle β denotes its angle with OA.

The discrete-time equations of this model can be obtained
by applying an explicit Euler method with a sampling time
tcs for continuous states [2]. The control vector for this ve-
hicle is defined as ut , [δt, at], where at is its acceleration.
The state vector is defined as st , [xt, yt, ψt, vt, lt], where
lt is the current lane number. The detail equations can be
found in Appendix. More compactly, the update of the state
vector is denoted as st+1 = f(st,ut).

III. CONTROL POLICY SYNTHESIS

In this section, we design a control policy based on the
HSCS model to exploit beneficial information sharing. For
the discrete state transition control, i.e., whether to change
lane or keep lane, shared information is utilized to make
decisions according to the reward of lane changing and the
guard conditions defined in this section. For the low-level
continuous state control, there are some existing methods,
whose performance can also be improved by information
sharing, such as relaxing the constraints in an MPC con-
troller.

A. Discrete State Control

The guard Gqq′ decides whether the transition from state
q to state q′ would take place or not. The discrete state
transition policy is then proposed based on these guards.

The shared information can be used to determine when lane
changing is a better decision than lane keeping.

1) Guards: G12 specifies when the vehicle should make
a decision to change left. The incentive to change lane is to
achieve higher speed or avoid obstacle/traffic jam. A quality
factor is defined to evaluate the future velocity quality of
each lane based on shared velocity information. The factor
corresponds to whether a vehicle could achieve higher speed
after lane changing is defined as the following.

Definition 3 (Quality factor for the future velocity). The
quality factor for the future velocity of lane #lk is

Qv(lk) =
1

N

∑
i:i∈Nk

T∑
j=1

γ(j−1)vit+j , (1)

where Nk = {i|i ∈ Ni(ε), l
i
t = lk}, N =| Nk |, lk ∈

{1, 2, 3}, γ is a decay coefficient, vit+j is the velocity of the
vehicle i at time instant (t+ j).

As time increases, the larger j is, the less accuracy
vit+j would have. Therefore, a decay coefficient γ < 1 is
multiplied to penalize future information. This quality factor
has a good reflection of the velocity that an ego vehicle can
achieve, and helps to avoid unnecessary lane changing. For
example, even though at time t the vehicles on the neighbor
lane have a higher speed than the ego vehicle, there may
be a traffic jam in front of them. The ego vehicle could not
observe this traffic jam because it could not see through its
neighbors which block its view. In this case, there is no need
to change lane.

It may make some passengers uncomfortable with frequent
lane changes. Therefore, another quality factor is defined to
evaluate the frequency of lane changing.

Definition 4 (Quality factor for the lane changing frequency).
The quality factor for the lane changing frequency is

Qf = −
F∑
i=1

Change(t− i), (2)

where t is the current time instant, F is a constant determin-
ing the window size of [t− F, t− 1] and

Change(i) =

{
1, if lane changing starts from time i;
0, otherwise.

(3)

The larger this summation is, the less comfort the passen-
gers may feel, which results in a smaller quality factor Qf .
The reward function for CL is defined as a weighted sum of
the above two quality factors:

Definition 5 (Reward function for CL). The reward function
for CL is

rCL(lk) = w · (Qv(lk − 1)−Qv(lk)) +Qf , (4)

where w is a weight that trades off two objectives, Qv(0) is
defined to be 0 for convenience.

2228

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 15:23:11 UTC from IEEE Xplore.  Restrictions apply. 



This weight should be determined by passengers’ prefer-
ence. If passengers do not like frequent lane change, then w
is small; if passengers just want to arrive their destination
as soon as possible without caring about how often lane
changing happens, then w is large.

The ego vehicle would change left only if the correspond-
ing reward is large enough. Therefore, we have

Definition 6 (The guard for the start of CL). The guard for
the start of CL is

G12 : rCL(lt) ≥ ΘCL, (5)

where ΘCL is a predefined threshold.

Whenever the lane changing finishes, the vehicle will turn
back to the LK state. The termination of this process can be
observed by the lane changing trajectory, therefore,

Definition 7 (The guard for the end of CL). The guard for
the end of CL is

G21 :| yt − yl |≤ εcl, (6)

where yt is the lateral position of the CoG, yl is the lateral
position of the left lane’s center line, and εcl is a predefined
small number.

Due to symmetry, G13 : rCR(lt) ≥ ΘCR, where rCR(lt)
can be defined similarly with (4); G31 :| yt−yr |≤ εcr where
yr is the lateral position of the right lane’s center line.

2) Discrete State Transition Policy: Based on the guards
above, the discrete state transition policy of each HSCS can
be synthesized as Algorithm 1. The time interval for this
high-level controller is denoted by Tds. If current state is LK,
this algorithm will check G12∨G13 for every Tds time steps.
If this condition holds, it means the reward of lane changing
is considerable, then the ego vehicle will enter CL/CR state
accordingly.

In most time instants, the ego vehicle stays in the LK state.
The ”Update continuous state dynamics in the LK state”
in Algorithm 1 does not trigger to enter the CL/CR state
or exit the LK state behavior, since the ego vehicle only
updates continuous state space dynamics. Once the vehicle
enters the lane changing state (CL or CR), the time step t
and continuous state space dynamics would update according
to that state. The discrete states will not be influenced
by information sharing or transited until the lane changing
maneuver finishes.

When determining lane changing, each vehicle just needs
to consider CL/CR excluding changing 2 lanes continuously,
e.g., from lane #1 to lane #3. What if the vehicle is in lane
#1 with a low speed while lane #3 is totally open? In this
case, the vehicles in lane #2 would definitely notice the open
lane first and choose to change to lane #3. After they finishes
lane changing, vehicles on lane #1 may start to change to
lane #2 and may then change to lane #3 according to the
corresponding reward. Vehicles in lane #1 do not need to
worry about the quality factor on lane #3 at the beginning,
because it cannot circumvent lane #2 and jump to lane #3.

Algorithm 1: Discrete state transition synthesis

1 Initialize the continuous states;
2 Initialize the discrete state to be the LK state;
3 for every Tds time steps do
4 if current in CL / CR state then
5 Update in the current state until G21 / G31.
6 else
7 if G12 ∨G13 then
8 if rCL(lt) > rCR(lt) then
9 Check the feasibility of CL by the

continuous controller; if feasible, enter
CL state until it finishes (G21), then
enter the LK state.

10 else
11 Check the feasibility of CR by the

continuous controller; if feasible, enter
CR state until it finishes (G31), then
enter the LK state.

12 end
13 else
14 Update continuous state dynamics in the LK

state;
15 end
16 end
17 end

In this way, the computation cost would be reduced by only
focusing on two neighbor lanes.

Remark. Algorithm 1 is the discrete state transition synthe-
sis for each individual ego vehicle. If all the autonomous
vehicles use this algorithm to make high-level decisions,
it is neither practical nor necessary for them to update
states synchronously. The random back-off algorithm in com-
munication could be a good reference to generate random
update sequence [13]. This can also help to avoid potential
conflicts, for example, two vehicles determine to change lane
simultaneously.

B. Continuous State Control

Researchers have proposed various controllers for au-
tonomous vehicles’ trajectory following, e.g., Model Predic-
tive Control (MPC) [2], [4], and the control barrier function
based program [16], [1]. In this section, the MPC in [2] is
taken as an example to show how the shared information
helps to relax the constrains in the underlying continuous
state controller.

For each T time horizon T = [t, t+ 1, ..., t+ T − 1], the
control inputs can be generated by the following MPC:

min
ui,si+1

∑
i∈T

(si+1 − srefi+1)TQ(si+1 − srefi+1) + uT
i Rui

s.t. si+1 = f(si,ui), ∀i ∈ T
umin ≤ ui ≤ umax, ∀i ∈ T

u̇min ≤ ui+1 − ui ≤ u̇max, ∀i ∈ T
smini+1 ≤ si+1 ≤ smaxi+1 , ∀i ∈ T

(7)
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where Q ∈ R5×5, R ∈ R2×2 are positive definite weighting
matrices for tuning; srefi+1 is the reference trajectory, smini+1 and
smaxi+1 are the bounds of each state:

smini+1 = [xmini+1 ,−wlane,−π/2, 0, 1]T, (8)

smaxi+1 = [xmaxi+1 , wlane, π/2, v
max, 3]T, (9)

where wlane represents the width of each lane.
The following two subsections describe how shared infor-

mation is used to calculate xmini+1 and xmaxi+1 in lane keeping
and lane changing states respectively.
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(a) Based on prediction. The safety interval is obtained based on
the position range prediction of car A and car C.
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(b) Based on information sharing. The safety interval is obtained
based on the trajectory planning of car A and C. Its range is no
smaller than the prediction-based safety interval.
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(c) Refined by a safety buffer. Both the prediction and shared
information are not accurate enough, and there might be a latency
caused by communication and control implementation.

Fig. 3. The safety interval for the ego car B is the position bound in
Equ. (7). To elaborate the idea of safety interval, each car is treated as a
mass point at the CoG in this figure.

1) Lane Keeping: In order to guarantee driving safety,
there should not be overlap in positions of all the vehicles.
To elaborate the idea of safety interval, we first ignore the
length (lf + lr) of each vehicle and treat each vehicle as
a mass point at the CoG. The state bound [xmini+1 , x

max
i+1 ] is

used to guarantee the planned path locating within the safety
interval. As shown in Fig. 3(a), for autonomous car B, xt+1

should satisfy xr,maxt+1 ≤ xt+1 ≤ xf,mint+1 , where xr,maxt+1 is the
maximum position of the rear car (represented by ”r” in the
superscript) at time t+1 and xf,mint+1 is the minimum position
of the front car (represented by ”f” in the superscript) at time
t + 1. This range is called the safety interval for car B at
time t+1. The safety interval can ensure there is no position
overlap between the ego vehicle and its front/rear neighbor.
This safety interval is predicted based on probability density
functions in [2].

If the position information [xt, xt+1, ..., xt+T ] is shared
among car A, B and C, then the safety interval can be
directly obtained as [xri+1, x

f
i+1] for each i, as shown in

Fig. 3(b). No matter what kind of prediction is used, because
xrt+1 ≤ xr,maxt+1 ≤ xt+1 ≤ xf,mint+1 ≤ xft+1, the information
sharing could give a larger safety interval (at lease equal to),
like car C in Fig.3(a). A larger safety interval would bring
more freedom to the control inputs of the ego vehicle, which
would hopefully generate smaller control cost for the optimal
solution of (7).

Both prediction and shared information may not be ac-
curate enough. Also, there might be a latency caused by
communication and control implementation. Therefore, a
small safety buffer is added to improve safety under these
uncertainties, as shown in Fig. 3(c).

𝑥"𝑥"#$% 𝑥"#$
&

𝑆𝑎𝑓𝑒𝑡𝑦	𝑏𝑢𝑓𝑓𝑒𝑟
𝑆𝑎𝑓𝑒𝑡𝑦	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑙&𝑙& 𝑙% 𝑙%

Fig. 4. The safety interval used in Equ. (7) is the information-sharing-based
interval refined by safety buffers and cars’ length.

Now we add these cars’ length back in Fig. 4. The physical
positions of lf and lr can be found in Fig. 2. Finally, with
information sharing, the safety interval is selected as

[xri+1 + lbf + lf + lr, x
f
i+1 − lbf − lf − lr],

where lbf is the length of the safety buffer.
2) Lane Changing: The MPC program (7) can also be

used to validate the feasibility of a lane change at time t,
and generate control inputs if there are feasible solutions.
Similar to the lane keeping case, the shared information is
utilized to refine the safety intervals on both the current lane
and target lane.

During lane changing, the continuous state bounds should
consider the safety intervals on both the current lane and
the target lane. As shown in Fig. 5, the ego car D is going
to change left. The safety interval used in Fig. 5 is the
intersection of the two intervals on lane #1 and #2, which is
[xAt+1 + lbf , x

B
t+1− lbf ] in this case. If there is another car in

parallel to the ego vehicle on the target lane, simply set the
safety interval to be [0, 0]. Then the MPC program (7) will
return an infeasible result to the Algorithm 1.

As long as the two cars have some overlap along the
longitudinal axis, they are called in parallel no matter how
small it is. When a car is changing lane, it is assumed to be
occupying two lanes (the current lane and the target lane)
simultaneously until this maneuver finishes. For example,
once car D starts to change to lane #1, it is considered
to be occupying both lane #1 and #2 during this process.
This assumption would influence the information received
by other vehicles. When plugging in (7), the length of each
car is also added back, similarly with Fig. 4

C. Benefits of Information Sharing

Each autonomous vehicle is expected to share its current
and planned positions, velocities, lane numbers in the future
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Fig. 5. Car D is changing from lane #2 to lane #1. Its safety interval is the
intersection of the safety intervals on both the current lane (#2) and target
lane (#1). Here the length of each car is ignored for simplicity.

T time steps. These planned future information can only be
obtained through information sharing among vehicles, rather
than measuring by sensors. For each individual ego vehicle,
the utilization of shared information is:
• In the discrete state transition, shared information is

used to calculate quality factor for the future velocity of
different lanes, which could help achieve higher velocity
and avoid unnecessary lane changing.

• In the continuous state controller calculation, shared
information can help to improve the performance of
existing methods. For example, the safety interval could
be enlarged (or at lease equal to) in MPC.

In the system level, the performance of information shar-
ing can be evaluated by the following criteria:

1) Traffic Flow: The traffic flow can reflect the quality of
road throughout with respect to the traffic density. The traffic
density ρ is the ratio between the total number of vehicles
and the length of the road. The traffic flow is calculated as

Q = ρ× v̄, (10)

where v̄ is the average velocity of all the vehicles [21].
The quality factor for the future velocity can guide the

vehicle to a lane with a higher velocity. The larger safety
interval gives more freedom to the controller, which may
generate a larger velocity. Therefore, the traffic flow is
expected to be larger with information sharing.

2) Average Driving Comfort Cost: Define the driving
comfort cost with respect to the vehicle i’s acceleration ait
at time t as follows:

Cost(ait) =


1, if ait < Θa;

2, if ait ≥ Θa;

3, lane changing,
(11)

where Θa is a predefined threshold.
The Average Driving Comfort Cost (ADCC) is the average

driving comfort costs of all the autonomous vehicles on the
road and all the time instants. It is represented by

1

N total · tmax
∑
i

∑
t

Cost(ait), (12)

where N total is the total number of all the vehicles on the
road. This ADCC is modified based on the effort definition
in [11] by adding a term to deal with lane changing.
The quality factor for the future velocity is used to avoid
unnecessary lane changing. The quality factor for the lane
changing frequency is further used to improve the driving
comfort. Therefore, the ADCC is expected to be smaller with
information sharing.

IV. SIMULATION

The benefits of information sharing for individual vehicle
can be explicitly found from the definition of the reward
function (4) and the MPC program (7). The benefits in
system level is shown by simulation in this section. In our
simulation, the initial positions of all the vehicles are ran-
domly scattered on different lanes. The simulation platform is
MATLAB, and there are some standard solvers for nonlinear
programming [14]. The length of the highway is 1000. When
a vehicle reaches the end of this highway, it will continue
driving from the start. It works like there is a portal at the
end of the road that sends all the vehicles to the start of this
road. The total number of vehicles ranges from 100 to 900.
For different traffic densities, simulation will run for 2000
time steps. The two criteria defined in Sec. IV are calculated
based on the statistics in the last 1000 time steps. Also, the
simulation runs 30 times under different initialization for
each traffic density.
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Fig. 6. The comparison between with and without information sharing. As
the traffic density grows, the information sharing gives larger traffic flow
and better driving comfort (a smaller ADCC value).

As shown in Fig. 6, the two criteria are compared between
with and without information sharing. With information shar-
ing among autonomous vehicles, the discrete state transition
is based on Algorithm 1, where the reward function is used;
the MPC program is using the safety interval generated by
shared information. Without information sharing, the lane
changing is determined by the velocities of the neighbors;
the safety interval is constructed based on predictions. In
Fig. 6, when the traffic density ρ is small, there is small
difference between the two methods, because all the vehicles
have enough space to drive at a high speed and there is almost
no need to change lane. As ρ grows, the information sharing
could give a larger traffic flow and smaller ADCC, which
satisfies the analysis in Sec. III-C.
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Fig. 7. The comparison between different weights. The weight w trades
off two objectives in reward function (4). The larger w1 gives a larger traffic
flow. The smaller w3 gives better driving comfort or a smaller ADCC value.
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The performance of the control policy is influenced by
the trade-off weight w in the reward function (4). Fig. 7
compares traffic flow and ADCC under different weights.
Similarly, there is small difference when ρ is small. As ρ
grows, the larger w gives a larger traffic flow but with a
larger ADCC. Because the larger w means the vehicle would
be more willing to change lane when it could reach a higher
speed. The smaller w considers more about the lane change
frequency, therefore lead to a better ADCC while sacrificing
the traffic flow.

V. CONCLUSION

This paper explores the control policy and benefits when
sharing information among autonomous vehicles. We pro-
pose to share a T -time-step future information among au-
tonomous vehicles’ ε-neighbors besides current state in-
formaton. A HSCS is defined to study the discrete and
dynamic behavior of an autonomous vehicle. In the high-
level discrete state transition control, the shared information
is used to evaluate the reward of lane changing. In the low-
level continuous state control, the shared information can
relax the state bounds determined by the safety interval.
In simulation, the information sharing can improve the
traffic flow and driving comfort when the traffic density is
large enough. Therefore, the T -time-step future information
sharing among autonomous vehicles and the control policy
developed in this work shows advantages compared with
existing frameworks. Formal method-based and reachability
analysis-based approach could be used to validate the safety
of this hybrid system in future work.
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APPENDIX

Kinematic Bicycle Model

The control vector for this vehicle is defined as ut ,
[δt, at], where at is its acceleration. The state vector is
defined as st , [xt, yt, ψt, vt, lt], where lt is the current lane
number. The detail equations can be found in [2] as follows:

ẋt = vtcos(ψt + βt),

xt+1 = xt + ẋttcs,

ẏt = vtsin(ψt + βt),

ỹt+1 = yt + ẏttcs,

yt+1 = ỹt+1 +


−wlane, if ỹt+1 ≥ wlane

2 ;

wlane, if ỹt+1 < −wlane

2 ;

0, otherwise.
ψt+1 = ψt + vtcosβttanδt

lf+lr
· tcs,

vt+1 = vt + attcs,

lt+1 = lt +


1, if ỹt+1 ≥ wlane

2 ;

−1, if ỹt+1 < −wlane

2 ;

0, otherwise,

(13)

where βt is the slip angle. Once the control variable
δt is determined, this angle can be updated as βt =

tan−1
(

lr
lf+lr

· tanδt
)

. More compactly, the update of the
state vector is denoted as st+1 = f(st,ut) in the MPC
program (7).
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