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Abstract—In recent years, there are more and more situations 

that need robots to do dangerous and complex works instead of 

human, to improve the efficiency and reduce the risk. Path 

planning for multi-robot systems is one of the most important 

problems to solve in practice. As the improvements in 

communication and control technology of robots, an algorithm is 

proposed using Particle Swarm Optimization and Critical Path 

Schedule Method to do path planning for multi-robot systems to 

reach the targets without collision not only between the robots but 

also between the robots and environment. Different from 

traditional method, a schedule is proposed on the planned optimal 

or feasible path to enable the robots to avoid collisions and 

minimize the cost such as time, distance. Moreover, a simulation 

experiment is given to verify the validity of proposed algorithm, 

whereby the environment is studied in a two dimensional free 

space. 
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I.  INTRODUCTION  

Path planning for multi-robot systems is a key problem for 

mobile robots. Most path planning algorithms can be evaluated 

in terms of completeness, complexity and optimality. Path 

planning algorithms for multi-robot systems can be divided into 

two categories: coupled and decoupled. 

  Coupled algorithms plan the trajectories of all robots in the 

environment concurrently. By transferring the state of the 

individual robot together into a system state representation, a 

sequence of state transitions can be found to show how all 

robots reach their goals respectively. Coupled algorithms are 

built on a centralized architecture, where the information of all 

states is available. The limitation is that these algorithms need 

to search in a large configuration space. Using complete search 

methods, such as A* [1], coupled algorithms have completeness 

and optimality. However, since the size of the configuration 

space grows exponentially with the number of robots, the 

computational complexity of A* search also increases 

exponentially and quickly becomes intractable. Hopcroft et al. 

have shown that the general motion planning problem for 

multiple moving objects is PSPACE-hard [2]. One approach to 

reduce the size of the search space is to create probabilistic 

roadmaps (PRMs) through the environment; this method was 

shown in [3] to be probabilistically complete and demonstrated 

in simulation for up to five robots. Another approach is to 

decompose a large map into subgraphs and plan paths between 

subgraph segments before coordinating motion within each 

subgraph [4]. 

Decoupled algorithms plan the motion for individual robots, 

rather than for all robots simultaneously. In [5], the algorithm 

first plans a path among the stationary obstacles and then tunes 

the velocity along the path to avoid collisions with the moving 

obstacles. Such a decoupled approach has been further revisited; 

the prioritized planning scheme proposed in [6] assigns 

priorities to each robot and sequentially computes paths in a 

time-varying configuration space. In [7], prioritization is 

combined with potential fields to resolve possible conflicts. 

Decoupled methods may use a decentralized architecture, 

allowing independent planning-based methods such as maze-

searching [8] or potential fields [7]. They may also use a 

centralized architecture planning for all robots with a single 

processor. Centralized decoupled planners typically determine 

individual trajectories sequentially and combine the plans of all 

robots to avoid collisions. Plans can be combined by iteratively 

adding new obstacles into the configuration space [9]; however, 

this inherently involves assigning priorities to robots to 

determine the order, which affects the quality of the resulting 

plan. This can be addressed by considering all different 

combinations of priorities (e.g., [10] demonstrate up to three 

robots), or running an optimization process on the priority 

assignment [11]. In a more dynamic paradigm, the plans of 

individual robots can be merged into the global coordination 

plan as new goals are assigned [12]. By planning the motion of 

robots sequentially, decoupled methods have lower complexity 

and greater scalability than a coupled plan; however, this comes 

with a reduction in completeness and optimality.   

In this paper, a new algorithm is proposed to combine the 

advantage of coupled and decoupled approaches. Firstly, 

decoupled planning based on Particle Swarm Optimization 

(PSO) is utilized to generate an optimal path for individual 

robot in a free space rather than grid space, while the shapes of 

the obstacles can be chosen randomly. After that the schedules 
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for every robot are obtained by Critical Path Schedule Method 

(CPSM) proposed in this article to avoid collisions without any 

priorities assigned in advance. Since the target is to minimize 

the total distance and total time, the priority for time is needed 

rather than the priority for some specified robot. Another 

advantage of CPSM is that it doesn’t require all robots have the 

same performance when moving, which means they can have 

different maximum speed, acceleration and so on. The proposed 

method has a good performance in completeness, complexity 

and optimality. 

In Section Ⅱ, a more specific problem formulation is given. 

In Section Ⅲ, the algorithm of path planning for multi-robot 

systems is described which includes two main step. An example 

is given in Section Ⅳ to show how to use this algorithm to do 

path planning for multi-robot systems. Finally, we conclude and 

discuss future works in Section Ⅴ. 

II. PROBLEM FORMULATION 

The problem we need to solve is the path planning for multi-

robot systems from their start points to end points in free space. 

In this process, we need ensure that no collision happens not 

only between the robots but also between the robots and the 

obstacles whose positions and shapes are known in the 

environment. Meanwhile, the cost of distance and time should 

be minimized.  

In terms of mathematic expression, Path planning for 

individual robot is to find a set of points that the robot passes 

when moving in the environment. 𝑆𝑖(𝑖 = 1,2, ⋯ , 𝑛𝑢𝑚) in the 

global coordinate system 𝑂 − 𝑋𝑌 represents the start points of 

𝑛𝑢𝑚  robots, and 𝐺𝑖(𝑖 = 1,2, ⋯ , 𝑛𝑢𝑚)  represents the end 

points accordingly. As shown in Fig. 1, the black filled objects 

represent obstacles (the shapes of the obstacles can be chosen 

randomly). The sizes of the obstacles need to be expanded in 

advance to avoid the collisions between the robots and 

environment (the figure shows the shapes of obstacles after 

expansion) [13]. Taking robot 1 for example, the task is to find 

a point set  

𝑃1 = {𝑆1, 𝑝11, 𝑝12, ⋯ , 𝑝1𝑚 , 𝐺1}                      (1) 

(𝑝11, 𝑝12, ⋯ , 𝑝1𝑚)  is the point set we want to find in the 

environment.  𝑝𝑖j(𝑗 = 1,2, ⋯ , 𝑚)  must not be in the barrier 

region, and the points on the straight line joining  𝑝𝑖j and its 

adjacent points must not either. This point set can be used as the 

encoded mode in PSO. 

It is required that robot 1 must move to the direction of the 

target in every instant. Hence, the coordinate system 

transformation method is used to limit the robot's range of 

motion, as shown in Fig. 1 [14]. In the global coordinate system 

𝑂 − 𝑋𝑌, 𝑆1 is the new origin of coordinates, and the straight 

line joining  𝑆1 and 𝐺1 is the 𝑋′ axis. Meanwhile, the 𝑌′ axis is 

a line orthogonal to the 𝑋′ axis while passing the point 𝑆1. The 

coordinate system transformation formula is 

(
𝑥′
𝑦′

) = (
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼
) (

𝑥 − 𝑥𝑆1

𝑦 − 𝑦𝑆1
)                     (2) 

(𝑥, 𝑦), (𝑥′, 𝑦′)  represent the coordinates in the coordinate 

system 𝑂 − 𝑋𝑌  and 𝑆1 − 𝑋′𝑌′ respectively. 𝛼  is the angle 

between the 𝑋  axis and the 𝑋′  axis. (𝑥𝑆1
𝑦𝑆1

)  are the 

coordinates of 𝑆1 in the coordinate system 𝑂 − 𝑋𝑌.  

 
Fig. 1 Environmental model 

 

Divide the line segment 𝑆1𝐺1 into (𝑚 + 1) parts uniformly, 

and draw a line perpendicular to 𝑆1𝐺1  at every equipartition 

point to get parallel lines (𝑙11, 𝑙12, ⋯ , 𝑙1𝑚) whose intersections 

with robot’s path are points in the point set 𝑃1 . The robot’s 

range of motion is the area surrounded by 𝑙11、𝑙1𝑚  and the 

environment without the barrier region. If we define 𝑆1 as 𝑝10 

and 𝐺1 as 𝑝1𝑚+1, then the length of robot 1’s path 𝐿𝑃1
 can be 

expressed as 

𝐿𝑃1
= 𝐿𝑆1𝑝11

+ ∑ 𝐿𝑝1𝑗𝑝1𝑗+1

𝑚−1
𝑗=1 + 𝐿𝑝1𝑚𝐺1

= ∑ 𝐿𝑝1𝑗𝑝1𝑗+1
  𝑚

𝑗=0     

(3) 

𝐿𝑝1𝑗𝑝1𝑗+1
 represents the distance between 𝑝1𝑗  and 𝑝1𝑗+1. 𝐿𝑃1

 

can be presented in the coordinate system 𝑆1 − 𝑋′𝑌′ as  

𝐿𝑃1
= ∑ √(𝑥𝑝1𝑗

′ − 𝑥𝑝1𝑗+1
′ )2 + (𝑦𝑝1𝑗

′ − 𝑦𝑝1𝑗+1
′ )2

𝑚

𝑗=0

 

= ∑ √(
𝐿𝑆1𝐺1

𝑚+1
)2 + (𝑦𝑝1𝑗

′ − 𝑦𝑝1𝑗+1
′ )2𝑚

𝑗=0                     (4) 

If we define 
𝐿𝑆1𝐺1

𝑚+1
 as 𝑑1 to represent the length of every part 

of the line segment 𝑆1𝐺1 after division and simplify 𝑦𝑝1𝑗
′  to 𝑦1𝑗

′ , 

then  

𝐹(𝑥) = 𝐿𝑃1
= ∑ √𝑑1

2 + (𝑦1𝑗
′ − 𝑦1𝑗+1

′ )2𝑚
𝑗=0            (5) 

Finally, the path planning of robot 1 can be understood as 

finding the optimal value of  the function 5 or finding the 

minimum 𝐿𝑃1
 in the solution space of 𝑦1𝑗

′ (𝑗 = 1,2, ⋯ , 𝑚). 𝐿𝑃1
 

can be used as the fitness function in PSO. Equation (1) can be 

changed to 

 𝑃1 = {0, 𝑦11
′ , 𝑦12

′ , ⋯ , 𝑦1𝑚
′ , 0}                      (6) 

III. PATH PLANNING FOR MULTI-ROBOT SYSTEMS 

Given the task is to make all the robots move from their start 

points to end points, the total time is the longest time costed by 

each robot rather than the addition of the time costed by all 

robots. Collisions can be avoided by good schedules rather than 
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changes in paths. What’s more, the same parameters will not be 

urged for all robots, if just concentrate on time requirement for 

each robot. Based on this idea, the problem can be solved with 

the method described as follows: 

Step 1 Plan a shortest path for each robot from its start point to 

end point separately. This step ensures the lower complexity 

and completeness for each robot. 

Step 2 Use CPSM to get the time arrangements so that all robots 

can move on their paths designed before without collisions. 

This step ensures the optimality and will not influence the 

completeness for each robot. 

These two main steps are introduced in detail respectively as 

follows. 

A. Path planning for each robot individually 

Also taking robot 1 for example, the path planning for robot 

1 can use the algorithm proposed in [14], described as follows: 

Step 1 Transform the coordinate system according to the 

robot’s start point 𝑆1  and end point 𝐺1 . Divide 𝑆1𝐺1  into 

(𝑚 + 1)  parts uniformly, and compute 𝑦1𝑗
′𝑚𝑖𝑛 、 𝑦1𝑗

′𝑚𝑎𝑥  and 

speed extremum 𝑣1𝑗
𝑚𝑎𝑥 . 

Step 2 Repeat the following steps when 𝑚 ranges from 2 to 22 

and find the best path for robot 1. 

Step 3 Initialize the speed 𝑣1𝑗
𝑘0  and position 𝑥1𝑗

𝑘0  of particle  

(𝑘 = 1,2, ⋯ , 𝑛) , and compute them fitness value. Initialize 

𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡. 

Step 4 Update the speed 𝑣1𝑗
𝑘𝑡  and position 𝑥1𝑗

𝑘𝑡  of particle  

(𝑘 = 1,2, ⋯ , 𝑛) , and compute them fitness value. Update 

𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡. 

Step 5 Turn to step 4 until the number of iterations comes to the 

maximum 𝑡𝑖𝑚𝑒𝑚𝑎𝑥  or the algorithm converges. 

An example can be showed to illustrate the influence of 𝑚 

on the result. The coordinates of 𝑆1  are (0,180)  in the 

environment shown in Fig. 1, and 𝐺1 is (280,20). The number 

of particles in the particle swarm 𝑛 = 100 , and 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 =
500. Fig. 2 shows the path length of the results when 𝑚 ranges 

from 2 to 22. 

 
Fig. 2. The relationship between the optimal path length and particle 

dimension 

 

When 𝑚 = 8, the path length obtains the minimum 𝐹(𝑥) =

345.78. The figure shows that the higher the dimension of the 

particles is, the shorter the path length cannot be ensured. In fact, 

the higher the dimension is, more freedom the line segments 

after division will get. The parts, that can be connected directly 

with a straight line when the dimension is low, must be 

connected with polygonal line on a high degree of freedom. It 

is easier to fall into local optimum in this case. Also, we need 

to utilize polygonal line instead of straight line at some time to 

get a shorter path length. So the optimal 𝑚 needs to be found if 

using this algorithm . 

B. Critical Path Schedule Method 

An activity on arc (AOA) network is used to get the schedule 

for each robot moving on the path planned by PSO [15-16]. By 

using a dummy activity (indicated by a dotted arc), we can get 

a project diagram which only has one start node and one finish 

node. The time at which all robots reach their target marks the 

end of the whole project. Before using this project diagram to 

get the schedule for each robot, some concepts must be given in 

advance. Despite CPSM is developed from CPM, some 

concepts are totally different. 

Definition 1: The node in the project diagram represents an 

actual point in the environment. 

Definition 2: The arc represents an activity which means the 

motion of a robot moving from one point to another. 

Activities don’t have the precedence relationships shown in 

the project diagram. Because each robot has its own path, an 

activity does not need to wait to begin until all predecessors are 

completed. The beginning of an activity will be only 

determined by the predecessors belonging to the same robot. 

The nodes in the diagram don’t need to be numbered as they 

don’t have the precedence relationships. The nodes can be 

named as the points in the environment. 

Definition 3: The duration of activity (𝑖, 𝑗), represented by 𝑡𝑖𝑗, 

is the shortest time in which the robot moves from point 𝑖 to 

point 𝑗. 

Note that different robots may have different maximum 

moving speed, so the duration may be different for each robot 

in the same activity. The nodes, arcs, and durations determine 

the structure of the project diagram completely. Then we can 

obtain some time parameters from this diagram. 

Definition 4: The early event time for node 𝑖, represented by 

𝐸𝑇(𝑖), is the earliest time at which the last robot that need to 

pass the point passes this point. 

Definition 5: The late event time for node 𝑖, represented by 

𝐿𝑇(𝑖), is the latest time at which the last robot pass the point 

without delaying the completion of the project. 

Definition 6: The total float, represented by 𝑇𝐹(𝑖, 𝑗), of the 

activity (𝑖, 𝑗) is the amount by which the moving time of the 

robot from 𝑖  to 𝑗  can be delayed without delaying the 

completion of the project (assuming no other activities are 

delayed). 

Although the meaning of 𝐸𝑇(𝑖), 𝐿𝑇(𝑖), 𝑇𝐹(𝑖, 𝑗) is different 

from CPM, the values are the same compared with the values 
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calculated by CPM using the same duration values in definition 

3. That is to say, we can use CPM to calculate 

𝐸𝑇(𝑖), 𝐿𝑇(𝑖), 𝑇𝐹(𝑖, 𝑗)  after determining the structure of the 

project diagram. 

Definition 7: The critical path is the longest path in all the 

moving paths for each robot planned before. 

The critical path is only determined by the total path distance 

of each robot, so it will not be influenced by the time parameters 

mentioned above. And sometimes it’s different from the path 

calculated by CPM using the same project diagram, e.g., when 

the path obtained by CPM is the combination of activities 

belonging to several robots.  

Each robot has a start node and a finish node. But only the 

start node and the finish node of the robot on the critical path 

represent the start node and the finish node of the diagram. All 

the finish nodes of the robots not on the critical path means the 

time when they reach their end points and wait for the robot on 

the critical path arriving at the finish node of the diagram. 

Definition 8: The safe time, represented by 𝑆𝑇, is the shortest 

time interval between two robots passing a same point without 

collisions, considering the size of the robot. 

Definition 9: The modified late event time for node 𝑖 , 

represented by 𝑀𝐿𝑇(𝑖), is the latest time at which a specific 

robot pass the point without delaying the completion of the 

project. 

 𝑀𝐿𝑇(𝑖)  may not equal 𝐿𝑇(𝑖)  because the activities don’t 

have the precedence relationships. 

Definition 10: If we have arranged the robot to pass node 𝑖 
before time 𝑡 , then the modified total float, represented by 

𝑀𝑇𝐹(𝑖, 𝑗),  will be 𝑇𝐹(𝑖, 𝑗) + 𝐸𝑇(𝑖) − 𝑡 

After having a knowledge of the basic concepts, CPSM can 

be used to get schedule for each robot. The algorithm is 

described as follows: 

Step 1 Use dummy activity to get a project diagram which only 

has one start node and one finish node. 

Step 2 Compute time parameters of nodes and arcs in this 

diagram. 

Step 3 Find the critical path. 

Step 4 Give the schedule of the robots. The robot on the critical 

path must move at its maximum speed, so the time that this 

robot pass the points on its path is 𝐸𝑇(𝑖) or 𝐿𝑇(𝑖). For other 

robots, the robot just needs to pass the node 𝑖 before 𝐿𝑇(𝑖) −
𝑆𝑇 when there will be only one robot to pass the node. If 𝑛𝑢𝑚 

robots will pass a same node 𝑖, the one whose predecessor have 

a longer total float will pass the node first. The time before 

which a specific robot pass node 𝑖 equals the time, which is the 

earliest time at which the next robot in the sequence passes this 

node, minus 𝑆𝑇, if the total float permits. Meanwhile, the last 

robot in this sequence must pass the node 𝑖 before 𝐿𝑇(𝑖) − 𝑆𝑇. 

All robots not on the critical path need to reach their finish 

nodes before the end of the project. 

 Sometimes we will have some trouble with step 4, and the 

settlements for these difficult cases are given below: 

Case 1: As shown in Fig. 3(a), it’s a part of a project diagram, 

and 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 𝐸𝑇(𝐵) = 𝐿𝑇(𝐵) = 4, 𝐸𝑇(𝐶) =
𝐿𝑇(𝐶) = 6. We can know that 𝑇𝐹(𝐴, 𝐶) = 𝑇𝐹(𝐵, 𝐶) = 0, so 

we can’t get the priority between 𝐴 and 𝐵 in step 4. But if we 

have arranged the robot to pass 𝐵 before 2 and 𝑆𝑇 = 1, then 

𝑀𝑇𝐹(𝐵, 𝐶) = 2. So the robot from  𝐵 must pass the node 𝐶 

before 5, and the robot from 𝐴 must pass the node 𝐶 at time 6. 

A

C

B
     

S1

S2

A

G1

G2

 
(a) Case 1                                     (b) Case 2 

Fig. 3. Special case 1 and 2 

 
Case 2: We can also utilize successors’ total float to adjust the 

time. The robot on the critical path must move at the 

maximum speed, so the time that this robot pass the points on 

its path is 𝐸𝑇(𝑖) or 𝐿𝑇(𝑖). For other robots, the robot just 

needs to pass the node 𝑖 before 𝐿𝑇(𝑖) − 𝑆𝑇 when there will be 

only one robot to pass the node. If 𝑛𝑢𝑚 robots will pass a 

same node 𝑖, the one whose successor have a longer total float 

will pass the node later. The time after which a specific robot 

pass node 𝑖 equals 𝑀𝐿𝑇(𝑖) of the previous robot in the 

sequence plus 𝑆𝑇, if the total float permits. Of course, each 

robot must pass node 𝑖 before its own 𝑀𝐿𝑇(𝑖) − 𝑆𝑇 

simultaneously. All robots not on the critical path need to get 

to their finish nodes before the completion of the project. A 

complete project diagram is shown in Fig. 3(b), and 𝐸𝑇(𝑆1) =
𝐿𝑇(𝑆1) = 𝐸𝑇(𝑆2) = 𝐿𝑇(𝑆2) = 0, 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 2, 

𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 7, 𝐸𝑇(𝐺1) = 3, 𝑆𝑇 = 1. 

Since 𝑀𝐿𝑇(𝐴) of robot 2 equals 6, robot 1 should pass node 𝐴 

at 2 and robot 2 should pass node 𝐴 from 3 to 5. Usually we 

hope all robots to reach their target as soon as possible, so we 

won’t use this method if possible. 

Case 3: When more than one robot moves on the same path 

like Fig. 4(a), we can use Fig. 4(b) to determine the time when 

they pass node 𝐵. 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 𝐸𝑇(𝐴′) = 𝐿𝑇(𝐴′). 

A B

A B

A 
 

(a)                                                        (b) 

Fig. 4. Special case 3 

 

Case 4: When the total float is too short to meet the 

requirements, we can enlarge the duration of the activity 

which has the maximum duration in the predecessors before. 

An example shows in Fig. 5(a), 𝐸𝑇(𝑆1) = 𝐿𝑇(𝑆1) =
𝐸𝑇(𝑆2) = 𝐿𝑇(𝑆2) = 0, 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 2, 𝐸𝑇(𝐺1) =
𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 7, 𝑆𝑇 = 1. After enlarging 

𝑇𝐹(𝑆1, 𝐴) to 3, 𝐸𝑇(𝑆1) = 𝐿𝑇(𝑆1) = 𝐸𝑇(𝑆2) = 𝐿𝑇(𝑆2) = 0, 

𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 3, 𝐸𝑇(𝐺1) = 𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) =

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 03:49:10 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

𝐿𝑇(𝐺2) = 8. Then, robot 1 should pass node 𝐴 at 3, and robot 

2 should pass node 𝐴 at 2. This is the only situation when the 

project’s time is longer than the longest time that the robot 

costs from its start point to its end point on its own way. 

Case 5: If the critical path computed by the CPM is different 

from the longest path in all the moving paths for the robots 

planned before, we need to modify some time parameters to 

make sure that the critical path is we desired. As shown in Fig. 

5(b), 𝐸𝑇(𝑆1) = 𝐿𝑇(𝑆1) = 𝐸𝑇(𝑆2) = 0, 𝐿𝑇(𝑆2) = 1, 𝐸𝑇(𝐴) =
𝐿𝑇(𝐴) = 3, 𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 8, 𝐸𝑇(𝐺1) = 4, 

𝑆𝑇 = 1. We can modify 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 2, 𝐿𝑇(𝐺1) =
𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 7, 𝐸𝑇(𝐺1) = 3. Then we can use the 

method mentioned in special case 2. Robot 1 should pass node 

𝐴 from 3 to 5 and reach node 𝐺1 before 7. Robot 2 should pass 

node 𝐴 at 2 and reach node 𝐺2 at 7. 
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(a) Case 4                                           (b) Case 5  

Fig. 5. Special case 4 and 5  
 

By CPSM, we can get a schedule according to which all 

robots can reach their target without collisions and the time of 

the project is minimized. Because we just give a schedule to 

all robots, it needs better communication and control 

technique to support in implement. 

IV. EXAMPLE 

A complete example is given in this section to solve the path 

planning of autonomous mobile multi-robot. The experimental 

environment’s size is 300 × 200 as shown in Fig. 1. There are 

3 robots in the environment, whose start points are 

(0,180), (20,120), (20,60)  and end points are 

(280,20), (300,80), (280,130)  respectively. The number of 

particles in the particle swarm 𝑛 = 100, and 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 = 500, 

ST=5. First of all, plan the paths for all robots separately using 

 
Fig. 6 The simulation results 

 

PSO. The optimal 𝑚 for 3 robots are 8, 3, 4 respectively. Their 

path planning results are illustrated in Fig. 6, and the 

coordinates of all points are given in TABLE I. Robot 1’s path 

is 𝑆1 − 𝐵 − 𝐶 − 𝐺1, and robot 2’s path is 𝑆2 − 𝐴 − 𝐶 − 𝐺2, and 

robot 3’s path is 𝑆3 − 𝐴 − 𝐵 − 𝐺3. The sum is 905.98, adding 

all the paths’ length. 

 

 
Assume that the maximum speed of all robots is 1 for 

convenience. According to the paths of all robots, we can draw 

a project diagram shown in Fig. 7. And the time parameters of 

nodes and arcs are listed in TABLE II and TABLE III 

respectively. 
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Fig. 7 The project diagram  

 

 
The critical path is 𝑆1 − 𝐵 − 𝐶 − 𝐺1. So robot 1 must move 

at its maximum speed and the time when robot 1 reach its target 

is the task completion time. For node 𝐴 , 𝑇𝐹(𝑆2, 𝐴) >
𝑇𝐹(𝑆3, 𝐴), so robot 2 should pass node 𝐴 before 150.7 − 𝑆𝑇 =
145.7  and robot 3 should pass node 𝐴  before 𝐿(𝐴) − 𝑆𝑇 =
186.94. There won’t be any collisions at node 𝐴 in this way. 

TABLE I 

THE SIMULATION PATH 

Point 
Number 

Robot 1 Robot 2 Robot 3 

1 0,180 20,120 20,60 

2 44.53,185.7 90.02,110.19 69.04,84.97 

3 82.68,180.26 160.04,100.32 120.3,101.71 

4 111.23,158 230.03,90.23 176.72,99.31 

5 140.29,136.63 300,80 232.3,100 

6 171.19,118.48  280,103 

7 196.27,90.14   

8 228.46,74.26   

9 261.86,60.48   

10 280,20   

 

 

TABLE II 
THE TIME PARAMETERS OF NODES 

Node(i) ET(i) LT(i) 

S1 0 0 

B 216.94 216.94 

C 221.78 221.78 

G1 345.78 345.78 

S2 0 0 

A 150.7 191.94 

G2 345.78 345.78 

S3 0 41.24 

G3 318.6 345.78 
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For node 𝐵, robot 1should pass node 𝐵 at 216.94 since robot 1 

is on the critical path. 𝑇𝐹(𝐴, 𝐵) > 𝑇𝐹(𝑆1, 𝐵), so robot 3 should 

pass node 𝐵  first. Robot 3 should pass node 𝐵  before  

216.94 − 𝑆𝑇 = 211.94 to avoid collisions. The detail schedule 

shows in TABLE IV.  

 

 
TABLE IV 

THE SCHEDULE OF 3 ROBOTS 

Robot 
Number 

Node 1 
Pass 
Time 

Node 2 
Pass 
Time 

Node 3 
Pass 
Time 

1 B 216.94 C 221.78 G1 345.78 

2 A 
before 
145.7 

C 
before 
216.78 

G2 
before 
345.78 

3 A 
before 

186.94 
B 

before 

211.94 
G3 

before 

345.79 

 

 

This is just a simple example. And we can regard the part 

(shown in Fig. 8) from 𝐷 to 𝐴 as a straight line, which robot 1 

and robot 2 need to pass, to avoid the collisions when moving 

if necessary. According to the sizes of robots and obstacles, we 

can also consider the circle 𝐸 including point 𝐴, 𝐵, 𝐶 as a point 

if necessary. 

 
Fig. 8 The modified simulation results 
 

V. CONCLUSIONS 

Based on the CPSM, an algorithm is proposed to solve path 

planning for multi-robot systems, which just takes two steps 

and can get a satisfactory result. Different from traditional path 

planning for multi-robot systems, this method can’t give a path 

without collisions or obstacle avoidance strategy but a schedule 

for all robots. The proposed method has a good performance in 

completeness, complexity and optimality. It needs more 

advanced communication and control technique to support the 

implement. The first step is a method to solve the path planning 

for individual robot. It’s simple and fast without the dependence 

on the shape of obstacles in a free space. The second step is 

based on the CPSM which can be used to manage multiple 

projects using some public resources. This approach provides 

the possibility of transforming multi-robot problem into an 

individual robot problem. And it’s easy to find the critical path, 

which influences the completion time of the task, and make the 

corresponding adjustment. There are also some shortages, such 

as it’s difficult to estimate the influence on time when robots 

making a turn. 
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TABLE III 

THE TIME PARAMETERS OF ARCS 

Activity(i,j) Duration TF(i,j) 

S1B 216.94 0 

BC 4.84 0 

CG1 124 0 

S2A 145.8 46.14 

AC 28.49 42.59 

CG2 108.55 15.45 

S3A 150.7 41.24 

AB 25 41.24 

BG3 101.66 27.18 
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