
Proceedings of 2016 IEEE 13th International Conference on Networking, Sensing, and Control

Mexico City, Mexico, April 28-30, 2016

978-1-4673-9975-3/16/$31.00 ©2016 IEEE

Path Planning for Multi-robot Systems Using PSO

and Critical Path Schedule Method

Songyang Han1,3, Xianzhong Zhou*1,2, Chunlin Chen1,2

1. Department of Control and Systems Engineering, School of Management and Engineering

2. Research Center for Novel Technology of Intelligent Equipment

 Nanjing University, Nanjing, Jiangsu, China, 210093

3. University of Michigan-Shanghai Jiao Tong University Joint Institute

Shanghai Jiao Tong University, Shanghai, China, 200240

Email: zhouxz@nju.edu.cn

Abstract—In recent years, there are more and more situations

that need robots to do dangerous and complex works instead of

human, to improve the efficiency and reduce the risk. Path

planning for multi-robot systems is one of the most important

problems to solve in practice. As the improvements in

communication and control technology of robots, an algorithm is

proposed using Particle Swarm Optimization and Critical Path

Schedule Method to do path planning for multi-robot systems to

reach the targets without collision not only between the robots but

also between the robots and environment. Different from

traditional method, a schedule is proposed on the planned optimal

or feasible path to enable the robots to avoid collisions and

minimize the cost such as time, distance. Moreover, a simulation

experiment is given to verify the validity of proposed algorithm,

whereby the environment is studied in a two dimensional free

space.

Keywords—Multi-robot, Path planning, PSO, CPM

I. INTRODUCTION

Path planning for multi-robot systems is a key problem for

mobile robots. Most path planning algorithms can be evaluated

in terms of completeness, complexity and optimality. Path

planning algorithms for multi-robot systems can be divided into

two categories: coupled and decoupled.

 Coupled algorithms plan the trajectories of all robots in the

environment concurrently. By transferring the state of the

individual robot together into a system state representation, a

sequence of state transitions can be found to show how all

robots reach their goals respectively. Coupled algorithms are

built on a centralized architecture, where the information of all

states is available. The limitation is that these algorithms need

to search in a large configuration space. Using complete search

methods, such as A* [1], coupled algorithms have completeness

and optimality. However, since the size of the configuration

space grows exponentially with the number of robots, the

computational complexity of A* search also increases

exponentially and quickly becomes intractable. Hopcroft et al.

have shown that the general motion planning problem for

multiple moving objects is PSPACE-hard [2]. One approach to

reduce the size of the search space is to create probabilistic

roadmaps (PRMs) through the environment; this method was

shown in [3] to be probabilistically complete and demonstrated

in simulation for up to five robots. Another approach is to

decompose a large map into subgraphs and plan paths between

subgraph segments before coordinating motion within each

subgraph [4].

Decoupled algorithms plan the motion for individual robots,

rather than for all robots simultaneously. In [5], the algorithm

first plans a path among the stationary obstacles and then tunes

the velocity along the path to avoid collisions with the moving

obstacles. Such a decoupled approach has been further revisited;

the prioritized planning scheme proposed in [6] assigns

priorities to each robot and sequentially computes paths in a

time-varying configuration space. In [7], prioritization is

combined with potential fields to resolve possible conflicts.

Decoupled methods may use a decentralized architecture,

allowing independent planning-based methods such as maze-

searching [8] or potential fields [7]. They may also use a

centralized architecture planning for all robots with a single

processor. Centralized decoupled planners typically determine

individual trajectories sequentially and combine the plans of all

robots to avoid collisions. Plans can be combined by iteratively

adding new obstacles into the configuration space [9]; however,

this inherently involves assigning priorities to robots to

determine the order, which affects the quality of the resulting

plan. This can be addressed by considering all different

combinations of priorities (e.g., [10] demonstrate up to three

robots), or running an optimization process on the priority

assignment [11]. In a more dynamic paradigm, the plans of

individual robots can be merged into the global coordination

plan as new goals are assigned [12]. By planning the motion of

robots sequentially, decoupled methods have lower complexity

and greater scalability than a coupled plan; however, this comes

with a reduction in completeness and optimality.

In this paper, a new algorithm is proposed to combine the

advantage of coupled and decoupled approaches. Firstly,

decoupled planning based on Particle Swarm Optimization

(PSO) is utilized to generate an optimal path for individual

robot in a free space rather than grid space, while the shapes of

the obstacles can be chosen randomly. After that the schedules

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 03:49:10 UTC from IEEE Xplore. Restrictions apply.

for every robot are obtained by Critical Path Schedule Method

(CPSM) proposed in this article to avoid collisions without any

priorities assigned in advance. Since the target is to minimize

the total distance and total time, the priority for time is needed

rather than the priority for some specified robot. Another

advantage of CPSM is that it doesn’t require all robots have the

same performance when moving, which means they can have

different maximum speed, acceleration and so on. The proposed

method has a good performance in completeness, complexity

and optimality.

In Section Ⅱ, a more specific problem formulation is given.

In Section Ⅲ, the algorithm of path planning for multi-robot

systems is described which includes two main step. An example

is given in Section Ⅳ to show how to use this algorithm to do

path planning for multi-robot systems. Finally, we conclude and

discuss future works in Section Ⅴ.

II. PROBLEM FORMULATION

The problem we need to solve is the path planning for multi-

robot systems from their start points to end points in free space.

In this process, we need ensure that no collision happens not

only between the robots but also between the robots and the

obstacles whose positions and shapes are known in the

environment. Meanwhile, the cost of distance and time should

be minimized.

In terms of mathematic expression, Path planning for

individual robot is to find a set of points that the robot passes

when moving in the environment. 𝑆𝑖(𝑖 = 1,2, ⋯ , 𝑛𝑢𝑚) in the

global coordinate system 𝑂 − 𝑋𝑌 represents the start points of

𝑛𝑢𝑚 robots, and 𝐺𝑖(𝑖 = 1,2, ⋯ , 𝑛𝑢𝑚) represents the end

points accordingly. As shown in Fig. 1, the black filled objects

represent obstacles (the shapes of the obstacles can be chosen

randomly). The sizes of the obstacles need to be expanded in

advance to avoid the collisions between the robots and

environment (the figure shows the shapes of obstacles after

expansion) [13]. Taking robot 1 for example, the task is to find

a point set

𝑃1 = {𝑆1, 𝑝11, 𝑝12, ⋯ , 𝑝1𝑚 , 𝐺1} (1)

(𝑝11, 𝑝12, ⋯ , 𝑝1𝑚) is the point set we want to find in the

environment. 𝑝𝑖j(𝑗 = 1,2, ⋯ , 𝑚) must not be in the barrier

region, and the points on the straight line joining 𝑝𝑖j and its

adjacent points must not either. This point set can be used as the

encoded mode in PSO.

It is required that robot 1 must move to the direction of the

target in every instant. Hence, the coordinate system

transformation method is used to limit the robot's range of

motion, as shown in Fig. 1 [14]. In the global coordinate system

𝑂 − 𝑋𝑌, 𝑆1 is the new origin of coordinates, and the straight

line joining 𝑆1 and 𝐺1 is the 𝑋′ axis. Meanwhile, the 𝑌′ axis is

a line orthogonal to the 𝑋′ axis while passing the point 𝑆1. The

coordinate system transformation formula is

(
𝑥′
𝑦′

) = (
𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛼

−𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼
) (

𝑥 − 𝑥𝑆1

𝑦 − 𝑦𝑆1
) (2)

(𝑥, 𝑦), (𝑥′, 𝑦′) represent the coordinates in the coordinate

system 𝑂 − 𝑋𝑌 and 𝑆1 − 𝑋′𝑌′ respectively. 𝛼 is the angle

between the 𝑋 axis and the 𝑋′ axis. (𝑥𝑆1
𝑦𝑆1

) are the

coordinates of 𝑆1 in the coordinate system 𝑂 − 𝑋𝑌.

Fig. 1 Environmental model

Divide the line segment 𝑆1𝐺1 into (𝑚 + 1) parts uniformly,

and draw a line perpendicular to 𝑆1𝐺1 at every equipartition

point to get parallel lines (𝑙11, 𝑙12, ⋯ , 𝑙1𝑚) whose intersections

with robot’s path are points in the point set 𝑃1 . The robot’s

range of motion is the area surrounded by 𝑙11、𝑙1𝑚 and the

environment without the barrier region. If we define 𝑆1 as 𝑝10

and 𝐺1 as 𝑝1𝑚+1, then the length of robot 1’s path 𝐿𝑃1
 can be

expressed as

𝐿𝑃1
= 𝐿𝑆1𝑝11

+ ∑ 𝐿𝑝1𝑗𝑝1𝑗+1

𝑚−1
𝑗=1 + 𝐿𝑝1𝑚𝐺1

= ∑ 𝐿𝑝1𝑗𝑝1𝑗+1
 𝑚

𝑗=0

(3)

𝐿𝑝1𝑗𝑝1𝑗+1
 represents the distance between 𝑝1𝑗 and 𝑝1𝑗+1. 𝐿𝑃1

can be presented in the coordinate system 𝑆1 − 𝑋′𝑌′ as

𝐿𝑃1
= ∑ √(𝑥𝑝1𝑗

′ − 𝑥𝑝1𝑗+1
′)2 + (𝑦𝑝1𝑗

′ − 𝑦𝑝1𝑗+1
′)2

𝑚

𝑗=0

= ∑ √(
𝐿𝑆1𝐺1

𝑚+1
)2 + (𝑦𝑝1𝑗

′ − 𝑦𝑝1𝑗+1
′)2𝑚

𝑗=0 (4)

If we define
𝐿𝑆1𝐺1

𝑚+1
 as 𝑑1 to represent the length of every part

of the line segment 𝑆1𝐺1 after division and simplify 𝑦𝑝1𝑗
′ to 𝑦1𝑗

′ ,

then

𝐹(𝑥) = 𝐿𝑃1
= ∑ √𝑑1

2 + (𝑦1𝑗
′ − 𝑦1𝑗+1

′)2𝑚
𝑗=0 (5)

Finally, the path planning of robot 1 can be understood as

finding the optimal value of the function 5 or finding the

minimum 𝐿𝑃1
 in the solution space of 𝑦1𝑗

′ (𝑗 = 1,2, ⋯ , 𝑚). 𝐿𝑃1

can be used as the fitness function in PSO. Equation (1) can be

changed to

 𝑃1 = {0, 𝑦11
′ , 𝑦12

′ , ⋯ , 𝑦1𝑚
′ , 0} (6)

III. PATH PLANNING FOR MULTI-ROBOT SYSTEMS

Given the task is to make all the robots move from their start

points to end points, the total time is the longest time costed by

each robot rather than the addition of the time costed by all

robots. Collisions can be avoided by good schedules rather than

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 03:49:10 UTC from IEEE Xplore. Restrictions apply.

changes in paths. What’s more, the same parameters will not be

urged for all robots, if just concentrate on time requirement for

each robot. Based on this idea, the problem can be solved with

the method described as follows:

Step 1 Plan a shortest path for each robot from its start point to

end point separately. This step ensures the lower complexity

and completeness for each robot.

Step 2 Use CPSM to get the time arrangements so that all robots

can move on their paths designed before without collisions.

This step ensures the optimality and will not influence the

completeness for each robot.

These two main steps are introduced in detail respectively as

follows.

A. Path planning for each robot individually

Also taking robot 1 for example, the path planning for robot

1 can use the algorithm proposed in [14], described as follows:

Step 1 Transform the coordinate system according to the

robot’s start point 𝑆1 and end point 𝐺1 . Divide 𝑆1𝐺1 into

(𝑚 + 1) parts uniformly, and compute 𝑦1𝑗
′𝑚𝑖𝑛 、 𝑦1𝑗

′𝑚𝑎𝑥 and

speed extremum 𝑣1𝑗
𝑚𝑎𝑥 .

Step 2 Repeat the following steps when 𝑚 ranges from 2 to 22

and find the best path for robot 1.

Step 3 Initialize the speed 𝑣1𝑗
𝑘0 and position 𝑥1𝑗

𝑘0 of particle

(𝑘 = 1,2, ⋯ , 𝑛) , and compute them fitness value. Initialize

𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡.

Step 4 Update the speed 𝑣1𝑗
𝑘𝑡 and position 𝑥1𝑗

𝑘𝑡 of particle

(𝑘 = 1,2, ⋯ , 𝑛) , and compute them fitness value. Update

𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡.

Step 5 Turn to step 4 until the number of iterations comes to the

maximum 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 or the algorithm converges.

An example can be showed to illustrate the influence of 𝑚

on the result. The coordinates of 𝑆1 are (0,180) in the

environment shown in Fig. 1, and 𝐺1 is (280,20). The number

of particles in the particle swarm 𝑛 = 100 , and 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 =
500. Fig. 2 shows the path length of the results when 𝑚 ranges

from 2 to 22.

Fig. 2. The relationship between the optimal path length and particle

dimension

When 𝑚 = 8, the path length obtains the minimum 𝐹(𝑥) =

345.78. The figure shows that the higher the dimension of the

particles is, the shorter the path length cannot be ensured. In fact,

the higher the dimension is, more freedom the line segments

after division will get. The parts, that can be connected directly

with a straight line when the dimension is low, must be

connected with polygonal line on a high degree of freedom. It

is easier to fall into local optimum in this case. Also, we need

to utilize polygonal line instead of straight line at some time to

get a shorter path length. So the optimal 𝑚 needs to be found if

using this algorithm .

B. Critical Path Schedule Method

An activity on arc (AOA) network is used to get the schedule

for each robot moving on the path planned by PSO [15-16]. By

using a dummy activity (indicated by a dotted arc), we can get

a project diagram which only has one start node and one finish

node. The time at which all robots reach their target marks the

end of the whole project. Before using this project diagram to

get the schedule for each robot, some concepts must be given in

advance. Despite CPSM is developed from CPM, some

concepts are totally different.

Definition 1: The node in the project diagram represents an

actual point in the environment.

Definition 2: The arc represents an activity which means the

motion of a robot moving from one point to another.

Activities don’t have the precedence relationships shown in

the project diagram. Because each robot has its own path, an

activity does not need to wait to begin until all predecessors are

completed. The beginning of an activity will be only

determined by the predecessors belonging to the same robot.

The nodes in the diagram don’t need to be numbered as they

don’t have the precedence relationships. The nodes can be

named as the points in the environment.

Definition 3: The duration of activity (𝑖, 𝑗), represented by 𝑡𝑖𝑗,

is the shortest time in which the robot moves from point 𝑖 to

point 𝑗.

Note that different robots may have different maximum

moving speed, so the duration may be different for each robot

in the same activity. The nodes, arcs, and durations determine

the structure of the project diagram completely. Then we can

obtain some time parameters from this diagram.

Definition 4: The early event time for node 𝑖, represented by

𝐸𝑇(𝑖), is the earliest time at which the last robot that need to

pass the point passes this point.

Definition 5: The late event time for node 𝑖, represented by

𝐿𝑇(𝑖), is the latest time at which the last robot pass the point

without delaying the completion of the project.

Definition 6: The total float, represented by 𝑇𝐹(𝑖, 𝑗), of the

activity (𝑖, 𝑗) is the amount by which the moving time of the

robot from 𝑖 to 𝑗 can be delayed without delaying the

completion of the project (assuming no other activities are

delayed).

Although the meaning of 𝐸𝑇(𝑖), 𝐿𝑇(𝑖), 𝑇𝐹(𝑖, 𝑗) is different

from CPM, the values are the same compared with the values

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 03:49:10 UTC from IEEE Xplore. Restrictions apply.

calculated by CPM using the same duration values in definition

3. That is to say, we can use CPM to calculate

𝐸𝑇(𝑖), 𝐿𝑇(𝑖), 𝑇𝐹(𝑖, 𝑗) after determining the structure of the

project diagram.

Definition 7: The critical path is the longest path in all the

moving paths for each robot planned before.

The critical path is only determined by the total path distance

of each robot, so it will not be influenced by the time parameters

mentioned above. And sometimes it’s different from the path

calculated by CPM using the same project diagram, e.g., when

the path obtained by CPM is the combination of activities

belonging to several robots.

Each robot has a start node and a finish node. But only the

start node and the finish node of the robot on the critical path

represent the start node and the finish node of the diagram. All

the finish nodes of the robots not on the critical path means the

time when they reach their end points and wait for the robot on

the critical path arriving at the finish node of the diagram.

Definition 8: The safe time, represented by 𝑆𝑇, is the shortest

time interval between two robots passing a same point without

collisions, considering the size of the robot.

Definition 9: The modified late event time for node 𝑖 ,

represented by 𝑀𝐿𝑇(𝑖), is the latest time at which a specific

robot pass the point without delaying the completion of the

project.

 𝑀𝐿𝑇(𝑖) may not equal 𝐿𝑇(𝑖) because the activities don’t

have the precedence relationships.

Definition 10: If we have arranged the robot to pass node 𝑖
before time 𝑡 , then the modified total float, represented by

𝑀𝑇𝐹(𝑖, 𝑗), will be 𝑇𝐹(𝑖, 𝑗) + 𝐸𝑇(𝑖) − 𝑡

After having a knowledge of the basic concepts, CPSM can

be used to get schedule for each robot. The algorithm is

described as follows:

Step 1 Use dummy activity to get a project diagram which only

has one start node and one finish node.

Step 2 Compute time parameters of nodes and arcs in this

diagram.

Step 3 Find the critical path.

Step 4 Give the schedule of the robots. The robot on the critical

path must move at its maximum speed, so the time that this

robot pass the points on its path is 𝐸𝑇(𝑖) or 𝐿𝑇(𝑖). For other

robots, the robot just needs to pass the node 𝑖 before 𝐿𝑇(𝑖) −
𝑆𝑇 when there will be only one robot to pass the node. If 𝑛𝑢𝑚

robots will pass a same node 𝑖, the one whose predecessor have

a longer total float will pass the node first. The time before

which a specific robot pass node 𝑖 equals the time, which is the

earliest time at which the next robot in the sequence passes this

node, minus 𝑆𝑇, if the total float permits. Meanwhile, the last

robot in this sequence must pass the node 𝑖 before 𝐿𝑇(𝑖) − 𝑆𝑇.

All robots not on the critical path need to reach their finish

nodes before the end of the project.

 Sometimes we will have some trouble with step 4, and the

settlements for these difficult cases are given below:

Case 1: As shown in Fig. 3(a), it’s a part of a project diagram,

and 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 𝐸𝑇(𝐵) = 𝐿𝑇(𝐵) = 4, 𝐸𝑇(𝐶) =
𝐿𝑇(𝐶) = 6. We can know that 𝑇𝐹(𝐴, 𝐶) = 𝑇𝐹(𝐵, 𝐶) = 0, so

we can’t get the priority between 𝐴 and 𝐵 in step 4. But if we

have arranged the robot to pass 𝐵 before 2 and 𝑆𝑇 = 1, then

𝑀𝑇𝐹(𝐵, 𝐶) = 2. So the robot from 𝐵 must pass the node 𝐶

before 5, and the robot from 𝐴 must pass the node 𝐶 at time 6.

A

C

B

S1

S2

A

G1

G2

(a) Case 1 (b) Case 2

Fig. 3. Special case 1 and 2

Case 2: We can also utilize successors’ total float to adjust the

time. The robot on the critical path must move at the

maximum speed, so the time that this robot pass the points on

its path is 𝐸𝑇(𝑖) or 𝐿𝑇(𝑖). For other robots, the robot just

needs to pass the node 𝑖 before 𝐿𝑇(𝑖) − 𝑆𝑇 when there will be

only one robot to pass the node. If 𝑛𝑢𝑚 robots will pass a

same node 𝑖, the one whose successor have a longer total float

will pass the node later. The time after which a specific robot

pass node 𝑖 equals 𝑀𝐿𝑇(𝑖) of the previous robot in the

sequence plus 𝑆𝑇, if the total float permits. Of course, each

robot must pass node 𝑖 before its own 𝑀𝐿𝑇(𝑖) − 𝑆𝑇

simultaneously. All robots not on the critical path need to get

to their finish nodes before the completion of the project. A

complete project diagram is shown in Fig. 3(b), and 𝐸𝑇(𝑆1) =
𝐿𝑇(𝑆1) = 𝐸𝑇(𝑆2) = 𝐿𝑇(𝑆2) = 0, 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 2,

𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 7, 𝐸𝑇(𝐺1) = 3, 𝑆𝑇 = 1.

Since 𝑀𝐿𝑇(𝐴) of robot 2 equals 6, robot 1 should pass node 𝐴

at 2 and robot 2 should pass node 𝐴 from 3 to 5. Usually we

hope all robots to reach their target as soon as possible, so we

won’t use this method if possible.

Case 3: When more than one robot moves on the same path

like Fig. 4(a), we can use Fig. 4(b) to determine the time when

they pass node 𝐵. 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 𝐸𝑇(𝐴′) = 𝐿𝑇(𝐴′).

A B

A B

A

(a) (b)

Fig. 4. Special case 3

Case 4: When the total float is too short to meet the

requirements, we can enlarge the duration of the activity

which has the maximum duration in the predecessors before.

An example shows in Fig. 5(a), 𝐸𝑇(𝑆1) = 𝐿𝑇(𝑆1) =
𝐸𝑇(𝑆2) = 𝐿𝑇(𝑆2) = 0, 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 2, 𝐸𝑇(𝐺1) =
𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 7, 𝑆𝑇 = 1. After enlarging

𝑇𝐹(𝑆1, 𝐴) to 3, 𝐸𝑇(𝑆1) = 𝐿𝑇(𝑆1) = 𝐸𝑇(𝑆2) = 𝐿𝑇(𝑆2) = 0,

𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 3, 𝐸𝑇(𝐺1) = 𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) =

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 03:49:10 UTC from IEEE Xplore. Restrictions apply.

𝐿𝑇(𝐺2) = 8. Then, robot 1 should pass node 𝐴 at 3, and robot

2 should pass node 𝐴 at 2. This is the only situation when the

project’s time is longer than the longest time that the robot

costs from its start point to its end point on its own way.

Case 5: If the critical path computed by the CPM is different

from the longest path in all the moving paths for the robots

planned before, we need to modify some time parameters to

make sure that the critical path is we desired. As shown in Fig.

5(b), 𝐸𝑇(𝑆1) = 𝐿𝑇(𝑆1) = 𝐸𝑇(𝑆2) = 0, 𝐿𝑇(𝑆2) = 1, 𝐸𝑇(𝐴) =
𝐿𝑇(𝐴) = 3, 𝐿𝑇(𝐺1) = 𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 8, 𝐸𝑇(𝐺1) = 4,

𝑆𝑇 = 1. We can modify 𝐸𝑇(𝐴) = 𝐿𝑇(𝐴) = 2, 𝐿𝑇(𝐺1) =
𝐸𝑇(𝐺2) = 𝐿𝑇(𝐺2) = 7, 𝐸𝑇(𝐺1) = 3. Then we can use the

method mentioned in special case 2. Robot 1 should pass node

𝐴 from 3 to 5 and reach node 𝐺1 before 7. Robot 2 should pass

node 𝐴 at 2 and reach node 𝐺2 at 7.

S1

S2

A

G1

G2

S1

S2

A

G1

G2

(a) Case 4 (b) Case 5

Fig. 5. Special case 4 and 5

By CPSM, we can get a schedule according to which all

robots can reach their target without collisions and the time of

the project is minimized. Because we just give a schedule to

all robots, it needs better communication and control

technique to support in implement.

IV. EXAMPLE

A complete example is given in this section to solve the path

planning of autonomous mobile multi-robot. The experimental

environment’s size is 300 × 200 as shown in Fig. 1. There are

3 robots in the environment, whose start points are

(0,180), (20,120), (20,60) and end points are

(280,20), (300,80), (280,130) respectively. The number of

particles in the particle swarm 𝑛 = 100, and 𝑡𝑖𝑚𝑒𝑚𝑎𝑥 = 500,

ST=5. First of all, plan the paths for all robots separately using

Fig. 6 The simulation results

PSO. The optimal 𝑚 for 3 robots are 8, 3, 4 respectively. Their

path planning results are illustrated in Fig. 6, and the

coordinates of all points are given in TABLE I. Robot 1’s path

is 𝑆1 − 𝐵 − 𝐶 − 𝐺1, and robot 2’s path is 𝑆2 − 𝐴 − 𝐶 − 𝐺2, and

robot 3’s path is 𝑆3 − 𝐴 − 𝐵 − 𝐺3. The sum is 905.98, adding

all the paths’ length.

Assume that the maximum speed of all robots is 1 for

convenience. According to the paths of all robots, we can draw

a project diagram shown in Fig. 7. And the time parameters of

nodes and arcs are listed in TABLE II and TABLE III

respectively.

150.7

145.8 28.49 108.55

4
.8
4

101.66216.94
S1

S2

S3

A C

B

G2

G3

G1
124

Fig. 7 The project diagram

The critical path is 𝑆1 − 𝐵 − 𝐶 − 𝐺1. So robot 1 must move

at its maximum speed and the time when robot 1 reach its target

is the task completion time. For node 𝐴 , 𝑇𝐹(𝑆2, 𝐴) >
𝑇𝐹(𝑆3, 𝐴), so robot 2 should pass node 𝐴 before 150.7 − 𝑆𝑇 =
145.7 and robot 3 should pass node 𝐴 before 𝐿(𝐴) − 𝑆𝑇 =
186.94. There won’t be any collisions at node 𝐴 in this way.

TABLE I

THE SIMULATION PATH

Point
Number

Robot 1 Robot 2 Robot 3

1 0,180 20,120 20,60

2 44.53,185.7 90.02,110.19 69.04,84.97

3 82.68,180.26 160.04,100.32 120.3,101.71

4 111.23,158 230.03,90.23 176.72,99.31

5 140.29,136.63 300,80 232.3,100

6 171.19,118.48 280,103

7 196.27,90.14

8 228.46,74.26

9 261.86,60.48

10 280,20

TABLE II
THE TIME PARAMETERS OF NODES

Node(i) ET(i) LT(i)

S1 0 0

B 216.94 216.94

C 221.78 221.78

G1 345.78 345.78

S2 0 0

A 150.7 191.94

G2 345.78 345.78

S3 0 41.24

G3 318.6 345.78

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 03:49:10 UTC from IEEE Xplore. Restrictions apply.

For node 𝐵, robot 1should pass node 𝐵 at 216.94 since robot 1

is on the critical path. 𝑇𝐹(𝐴, 𝐵) > 𝑇𝐹(𝑆1, 𝐵), so robot 3 should

pass node 𝐵 first. Robot 3 should pass node 𝐵 before

216.94 − 𝑆𝑇 = 211.94 to avoid collisions. The detail schedule

shows in TABLE IV.

TABLE IV

THE SCHEDULE OF 3 ROBOTS

Robot
Number

Node 1
Pass
Time

Node 2
Pass
Time

Node 3
Pass
Time

1 B 216.94 C 221.78 G1 345.78

2 A
before
145.7

C
before
216.78

G2
before
345.78

3 A
before

186.94
B

before

211.94
G3

before

345.79

This is just a simple example. And we can regard the part

(shown in Fig. 8) from 𝐷 to 𝐴 as a straight line, which robot 1

and robot 2 need to pass, to avoid the collisions when moving

if necessary. According to the sizes of robots and obstacles, we

can also consider the circle 𝐸 including point 𝐴, 𝐵, 𝐶 as a point

if necessary.

Fig. 8 The modified simulation results

V. CONCLUSIONS

Based on the CPSM, an algorithm is proposed to solve path

planning for multi-robot systems, which just takes two steps

and can get a satisfactory result. Different from traditional path

planning for multi-robot systems, this method can’t give a path

without collisions or obstacle avoidance strategy but a schedule

for all robots. The proposed method has a good performance in

completeness, complexity and optimality. It needs more

advanced communication and control technique to support the

implement. The first step is a method to solve the path planning

for individual robot. It’s simple and fast without the dependence

on the shape of obstacles in a free space. The second step is

based on the CPSM which can be used to manage multiple

projects using some public resources. This approach provides

the possibility of transforming multi-robot problem into an

individual robot problem. And it’s easy to find the critical path,

which influences the completion time of the task, and make the

corresponding adjustment. There are also some shortages, such

as it’s difficult to estimate the influence on time when robots

making a turn.

REFERENCES

[1] E. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. SSC, vol. 4, no. 2,pp.

100–107, Jul. 1968.

[2] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects: PSPACE-hardness of

the ‘warehouseman’s problem’,” Int. J. Robot. Res., vol. 3, no. 4, pp. 76–

88, 1984.
[3] M. Peasgood, C. M. Clark, and J. McPhee, “A Complete and Scalable

Strategy for Coordinating Multiple Robots Within Roadmaps,” IEEE

Trans. On Robot., vol. 24, no. 2, pp.283-292, 2008
[4] M. R. K. Ryan, “Graph decomposition for efficient multi-robot path

planning,” Proc. IJCAI, pp. 2003–2008., 2007

[5] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The
path-velocity decomposition,” Int. J. Robot. Res., vol. 5, no. 3, pp.72–89,

1986.

[6] M. Erdmann and T. Lozano-Pérez, “On multiple moving objects,” Proc.
IEEE Int. Conf. on Robotics and Automation, San-Francisco, CA, pp.

1419–1424., 1986

[7] C.W. Warren, “Multiple robot path coordination using artificial potential

fields,” IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH, pp.

500–505., 1990
[8] V. J. Lumelsky and K. R. Harinarayan, “Decentralized motion planning

for multiple mobile robots: The cocktail party model,” Auton. Robots, vol.

4, no. 1, pp. 121–135, 1997.
[9] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”

Algorithmica, vol. 2, pp. 477–521, 1987.

[10] K. Azarm and G.Schmidt, “Conflict-free motion of multiple mobile
robots based on decentralized motion planning and negotiation,” Proc.

IEEE Int. Conf. Robot. Autom., pp. 3526–3533., 1997

[11] M. Bennewitz, W. Burgard, and S. Thrun, “Optimizing schedules for
prioritized path planning of multi-robot systems,” Proc. IEEE Int. Conf.

Robot. Autom., pp. 271–276., 2001

[12] R. Alami, F. Robert, F. Ingrand, and S. Suzuki, “Multi-robot cooperation
through incremental plan-merging,” Proc. ICRA, pp. 2573–2579., 1995

[13] Goyal, Jitin Kumar, and K. S. Nagla. "A new approach of path planning

for mobile robots." Advances in Computing, Communications and
Informatics (ICACCI, 2014 International Conference on IEEE, 2014:863-

867.

[14] Sun, Bo, Wei-dong Chen, and Yu-geng Xi. "Particle swarm optimization
based global path planning for mobile robots." Control and Decision 20.9

(2005): 1052.

[15] Winston, W. "Operations Research: Applications and Algorithms, 4th
edition." Wako Department of Economics Gakushuin University Tokyo

171-8588, Thomas Quint Department of Mathematics University of

Nevada at Reno (1994).
[16] Hillier, F S, and G. J. Lieberman. "Introduction to operations research, 9th

ed." McGraw-Hill international editions 464(2001):47.

TABLE III

THE TIME PARAMETERS OF ARCS

Activity(i,j) Duration TF(i,j)

S1B 216.94 0

BC 4.84 0

CG1 124 0

S2A 145.8 46.14

AC 28.49 42.59

CG2 108.55 15.45

S3A 150.7 41.24

AB 25 41.24

BG3 101.66 27.18

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on March 12,2021 at 03:49:10 UTC from IEEE Xplore. Restrictions apply.

