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Collaborative Multi-Object Tracking With
Conformal Uncertainty Propagation

Sanbao Su"”’, Songyang Han ", Yiming Li

Abstract—Object detection and multiple object tracking (MOT)
are essential components of self-driving systems. Accurate detec-
tion and uncertainty quantification are both critical for onboard
modules, such as perception, prediction, and planning, to improve
the safety and robustness of autonomous vehicles. Collaborative
object detection (COD) has been proposed to improve detection
accuracy and reduce uncertainty by leveraging the viewpoints of
multiple agents. However, little attention has been paid to how
to leverage the uncertainty quantification from COD to enhance
MOT performance. In this letter, as the first attempt to address
this challenge, we design an uncertainty propagation framework
called MOT-CUP. Our framework first quantifies the uncertainty
of COD through direct modeling and conformal prediction, and
propagates this uncertainty information into the motion prediction
and association steps. MOT-CUP is designed to work with different
collaborative object detectors and baseline MOT algorithms. We
evaluate MOT-CUP on V2X-Sim, a comprehensive collaborative
perception dataset, and demonstrate a 2% improvement in accu-
racy and a 2.67 X reduction in uncertainty compared to the base-
lines, e.g. SORT and ByteTrack. In scenarios characterized by high
occlusion levels, our MOT-CUP demonstrates a noteworthy 4.01%
improvement in accuracy. MOT-CUP demonstrates the importance
of uncertainty quantification in both COD and MOT, and provides
the first attempt to improve the accuracy and reduce the uncer-
tainty in MOT based on COD through uncertainty propagation.

Index Terms—Computer vision for transportation, deep lear-
ning for visual perception, multi-robot systems, visual tracking.

1. INTRODUCTION

BJECT detection [1] and multiple object tracking
(MOT) [2] represent crucial steps of self-driving, and their
accuracy and uncertainty quantification (UQ) are important to
facilitate various onboard modules including perception, pre-
diction and planning, to improve the safety and robustness of
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Fig. 1. Difference in data association for MOT with and without considering
uncertainty. Ground truth bounding boxes are in green, detected bounding
boxes in orange, and tracklets’ bounding boxes in red, labeled with object IDs.
Shadow ellipses indicate uncertainty of the detected bounding box. SORT [14],
which doesn’t consider uncertainty, is on the left side of the figure, while our
MOT-CUP framework, which incorporates uncertainty, is on the right side. At
time (t-1), both MOT algorithms output tracklet ID 186. However, at time t,
SORT fails to associate the low-quality detection with tracklet 186 due to a
large IoU distance. Thus, SORT removes the tracklet. In contrast, our MOT-CUP
framework quantifies the uncertainty of COD with a larger shadow ellipse to
represent the uncertainty of the bounding box for tracklet 186, and successfully
associates the low-quality detection by considering the uncertainty of COD.

the autonomous systems [3], [4], [S]. Multi-agent collaborative
object detection (COD) has been proposed to leverage the view-
points of multiple agents to enhance detection accuracy com-
pared with individual viewpoints [6], [7]. Numerous studies have
demonstrated the advantages of COD in enhancing the detection
accuracy [8], [9], [10], [11] and reducing the uncertainty [12].
Currently, Tracking-by-Detection is considered as one of the
most effective paradigms [13], using Kalman Filter to predict
the next location based on the previous detection results and
then performing data association [14], [15], [16], [17].
However, limitations exist in the methods mentioned above.
Existing Kalman Filter (KF) algorithms for motion prediction
typically use a fixed measured uncertainty for all detections in-
stead of rigorously calculated uncertainty. Moreover, employing
the Intersection-over-Union (IoU) association metric without
considering uncertainty in the Hungarian algorithm might not
suit poorly detected results due to occlusion. Hence, it remains
challenging to rigorously quantify and propagate the uncertainty
from COD to MOT to improve the accuracy, for both KF and
association steps. For instance, Fig. 1 illustrates how our frame-
work outperforms SORT [14] in associating tracklet 186 (red
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box) with the low-quality object detection (orange box) at time
t. The IoU metric in SORT fails to match them due to the
poor detection quality; whereas our framework, by incorporating
detection uncertainty (shadow ellipses), effectively associates
tracklet 186 even with the low-quality detection. It demonstrates
that integrating uncertainty into MOT can improve tracking
performance, especially for low-quality detection scenarios.

In this letter, we propose a novel uncertainty propagation
framework to improve the performance of these Tracking-by-
Detection algorithms, called MOT-CUP (Multiply Object Track-
ing with Conformal Uncertainty Propagation). Specifically, our
proposed MOT-CUP involves uncertainty quantification of col-
laborative object detection (COD) via direct modeling and con-
formal prediction techniques. The uncertainty obtained from the
COD stage is subsequently incorporated into both the Kalman
Filter and the association procedure of MOT. In particular,
we define a new association metric with Negative Log Like-
lihood (NLL) considering the uncertainty of COD and potential
low-quality detection results. Through extensive experiments
on V2X-SIM [6] and a series of Tracking-by-Detection MOT
algorithms, we show that MOT-CUP framework improves ac-
curacy with up to 2% and reduces uncertainty with up to 2.67x.
In high occlusion-level scenarios, our MOT-CUP achieves a
4.01% improvement in accuracy. This outcome underscores the
effectiveness of our MOT-CUP in challenging scenarios with
poor detection. Our results also provide strong validation for
the effectiveness of rigorous conformal prediction-based uncer-
tainty quantification in MOT. Overall, our findings highlight the
potential benefits of propagating uncertainty quantification into
MOT algorithms.

The main contributions of this work are as follows:

1) To the best of our knowledge, our MOT-CUP framework
is the first attempt to leverage quantified uncertainty from
collaborative object detection to improve MOT perfor-
mance. This framework can be applied to most object
detection models and MOT algorithms.

2) In the collaborative object detection stage, we employ
direct modeling and conformal prediction techniques to
rigorously quantify the uncertainty.

3) For MOT, we further improve the original MOT algorithm
by designing two novel methods that effectively leverage
uncertainty information for both the Kalman Filter and
association.

II. RELATED WORK

a) Collaborative Object Detection (COD): Collaborative Ob-
ject Detection (COD) surpasses traditional Single-Agent Ob-
ject Detection (SOD) by harnessing information from multiple
agents or sensors, elevating detection accuracy [6], [7], [18]
and mitigating uncertainty [12]. Multi-camera object detection
(MOD) [19] methods use strategically positioned cameras of
a single agent to improve performance [19]. In complex sce-
narios such as low-light conditions, occlusions, and adverse
weather, COD outperforms MOD for sharing complementary
information by communication between multiple agents [20].
Its dynamic integration of insights from various sources enables
effective adaptation to changing environments and scene dynam-
ics. Hence, COD harmonizes viewpoints and enables innovative
occlusion handling. Moreover, COD extends coverage and pre-
cision, with well-designed orchestration to avert redundancy or
misalignment [6]. In summary, COD redefines object detection,
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leveraging collaboration to tackle challenges and chart the future
of detection [21]. In this study, we want to show that even though
object detection performance has already improved, uncertainty
propagation from an advanced model such as COD is still
important to enhance the overall performance of subsequent
modules.

b) Uncertainty Quantification and Propagation: Uncertainty
Quantification (UQ) is vital for the collaborative perception of
safety-critical systems such as robots [22], [23] and connected
and autonomous vehicles [24], [25], [26]. In self-driving tasks,
UQ from COD could improve trajectory prediction [3] and
motion planning [5]. However, there is no research on how
to leverage COD uncertainty to enhance tracking performance.
Several methods for UQ in object detection (OD) require mul-
tiple inference runs, not designed for real-time tasks like COD,
such as Monte-Carlo dropout [27] and deep ensemble [28], [29].

Direct modeling (DM) [1] methods for OD have been pro-
posed [12], [30]. DM is promising for real-time computer vision
tasks, as only requires a single inference pass. However, DM
lacks rigorous UQ as the model may easily overfit the training
dataset. The work in [12] proposes the bootstrap calibrated
DM method for COD. However, the bounding box definition it
presented, which relies on corner coordinates, is not congruent
with tracking algorithms. Conformal prediction (CP) [31] is a
statistical method that converts any heuristic notion of uncer-
tainty (e.g. standard deviation estimations) into rigorous UQ.
To rigorously quantify the uncertainty in COD and propagate
the uncertainty to MOT, our MOT-CUP framework leverages
CP to calibrate the uncertainty estimation from DM.

c) Multiple Object Tracking (MOT): Several recent MOT
algorithms [13], [15], [17], [32], [33] use motion models based
on Bayesian estimation [34] to predict states by maximizing the
posterior estimation. Kalman Filter (KF) [35], a widely used
motion model, operates as a recursive Bayes filter that follows
a standard predict-update cycle. Current KF-based algorithms
typically use a fixed measured uncertainty for all detections
without considering rigorously estimated uncertainty to improve
the prediction accuracy. In contrast, we propose a rigorous UQ
of the COD process based on CP, and integrating it into KF for
enhanced accuracy and uncertainty estimation of output.

Data association is a crucial step of MOT, which involves
computing the similarity between tracklets and detected objects
and utilizing various strategies to match them based on their
similarity. The SORT algorithm [14] uses the Intersection over
Union (IoU) between predicted and detected boxes to determine
their similarity. This approach has proven to be highly compet-
itive on a variety of MOT benchmarks, and serves as a strong
baseline for more sophisticated tracking methods. With the sim-
ilarity, matching strategies assign identities to the objects. This
can be achieved through the Hungarian Algorithm [36] or greedy
assignment [33]. ByteTrack [13] utilizes similarities between the
low-quality detections and tracklets to recover accurate object
identities, improving data association performance. However,
using IoU distance as a similarity metric may not be appropriate
for low-quality detections as explained in Fig. 1. The Maha-
lanobis distance is also a widely used similarity score by quan-
tifying the dissimilarity between the detected objects and the
distributions of tracklets from the KF model [37]. Nonetheless,
substantial uncertainty could result in minimal distances, leading
to erroneous matching [17], [38]. The work in [38] proposes the
association log-likelihood distance to overcome this problem
by computing the logarithmized association probability. Unlike
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Fig. 2. Overview of our MOT-CUP framework. The red color highlights
the novelties and important techniques in our MOT-CUP framework. In the
collaborative object detection (COD) stage, we rigorously calculate uncertainty
quantification (UQ) of each object detection via direct modeling (DM) and
conformal prediction (CP). In the motion prediction stage of MOT, we adopt a
Standard Deviation-based Kalman Filter (SDKF) to enhance the Kalman Filter
process, that leverages the UQ results and predicts the locations of the objects in
the next time step with higher precision. In the association step, we first apply the
baseline association method and then associate the unmatched detections and
tracklets with the Negative Log Likelihood similarity metric, called NLLAI

conventional similarity scores, we propose the Negative Log
Likelihood (NLL) similarity score, which computes the NLL
between the detected distribution of the objects and the mean
of the tracklets to focus on the distribution of detections. So
it can ignore the large uncertainty and facilitate more accurate
associations for low-quality detections.

III. METHODOLOGY

A. Approach Overview

We design a novel framework for uncertainty propagation of
collaborative object detection (COD) to MOT, named Multi-
ple Object Tracking with Conformal Uncertainty Propagation
(MOT-CUP). Fig. 2 presents the methodology overview. The
major novelties are: (/) MOT-CUP framework first rigorously
quantifies the uncertainty in the COD stage based on direct mod-
eling and conformal prediction. (2) The uncertainty information
is leveraged in the motion prediction stage of MOT, where a
Standard Deviation-based Kalman Filter (SDKF) takes the un-
certainty quantification (UQ) of COD as its input to improve the
predicted precision of location. (3) We utilize the Negative Log
Likelihood as the similarity metric for the association step, called
NLLAL to improve the accuracy and reduce the uncertainty of
MOT.

In this section, we first introduce the conformal prediction
in Section III-B as preliminary literature of UQ and a useful
method to construct predicted uncertainty. We describe our
proposed MOT-CUP (Multiply Object Tracking with Conformal
Uncertainty Propagation) method as shown in Algorithm 1 and
Section III-C, followed by the detailed process of UQ of COD
based on direct modeling and conformal prediction in Sec-
tion III-D, and uncertainty propagation to MOT in Section III-E.

B. Preliminary

Conformal prediction (CP) [31] is a statistical method to gen-
erate prediction sets for any model. It is a method to convert any
heuristic notion of uncertainty (e.g. an estimate of the standard
deviation) to rigorous UQ. For example, we assume that an

3325

uncertain scalar follows Gaussian distribution and train a model
to output the mean and standard deviation. To be precise, we
choose to model Yiesr ~ N (p(z),0(2)) | x,..,=2> Where Xyest
is a testing data, and Yj.s; is the corresponding label. We train
fi(x) and & () to maximize the likelihood of the data. Conformal
prediction can turn this heuristic uncertainty notion into rigorous
prediction intervals of the form (ji(x) 4 go(x)), where ¢ is a
quantile found by CP.

Consider the validation data (X1,Y7), ..., (X, YN) with N
data points that are never seen during training, the CP for input
x and output y includes the following steps: (/) Define the score
function s(z,y) € R. (Smaller scores encode better agreement

between z and y). (2) Compute ¢ as the W quantile
of the validation scores s1 = $(X1,Y1),...,sny = s(Xn,YN),
where « € [0, 1] is a user-chosen error rate. (3) Use this quantile
to form the prediction sets C(X¢cst) for new examples:

C(Xtest) = {y : S(Xtestvy) S qA}v (1)

Note that (Xyest, Yiest) is a fresh test point from the same
distributions of the validation data. The CP provides a coverage
guarantee, as stated in the following lemma.

Lemma II1.1 (Conformal Coverage Guarantee [31]): Sup-
pose (Xk, Yi)k=1,. .~ and (Xyest, Yiest) are i.i.d., then the
following holds:

1
1-a S Pr(yzest S C(Xtest)) S -« + (2)

N+1
In other words, the probability that the prediction set contains
the correct label is almost exactly 1 — .

C. MOT-CUP Algorithm

The detail of MOT-CUP is presented in Algorithm 1. For
each frame in the point cloud sequence S, there are J ob-
jects. For each frame, the trained collaborative object detector
with direct modeling would generate a set of detected objects
D = {p;,loc;}7/_, (Line 3). The set includes the predicted
classification probability p; and the location of each object loc;.
The location of each object is represented by / random variables
parameterized by {9;,5;}1_; where §; is the mean and 6; is the
standard deviation for ¢-th variable. This object detector not only
predicts the location of each object but also provides a measure
of uncertainty.

To provide more accurate measures of uncertainty, we lever-
age the quantiles computed by CP to adjust the standard de-
viation &; (see Lines 4-8). Then, to track the detected objects
across multiple frames, we employ a Kalman Filter to predict
the current state of the tracklets, which is commonly used in
MOT [14] (see Lines 10-12). In the association step, we first
apply the origin association method (see Line 13) and store all
matched pairs (d,t) in A,,qtcheqd for d € D and ¢t € T. Then
we associate the unmatched detections and tracklets with the
Negative Log Likelihood similarity metric for lower-quality
detected objects (see Line 14). The detail of Negative Log
Likelihood-based Association Improvement (NLLAI) will be
introduced in Algorithm 2. To update the tracklets with the
matched detections, we go beyond the traditional MOT algo-
rithms by incorporating the detected standard deviation &; in
addition to the detected mean g; (see Lines 16—18). This allows
us to more accurately model the uncertainty associated with
each detection and incorporate it into the tracklet. The detected
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Algorithm 1: Multiple Object Tracking With Conformal
Uncertainty Propagation (MOT-CUP).

Data: input point cloud sequence S, the trained collaborative
object detector F', NLL threshold 7, baseline’s
Kalman Filter K F', baseline’s association method
BA, quantile of CP ¢
Result: Tracklet list 7
1 Initialization: 7~ < )
2 for point cloud frame C'in S in time sequence do
3 D = F(C) = {p;, loc; }]—1, where each location
contains {7, i }_1

4 for each object do

5 for i from I to I do

6 ‘ (Afi = (3'1‘ X qu

7 end

8 end

9 /* Adjust standard deviation by CP */

10 for ¢t in T do

1 | Apply Kalman Filter (KF) [35]

12 end

13 Amatchcd7 Dunmatchcd7 %nmatched = BA (D7 T)

14 matcheds Dunmateheds Tanmatehed =
NLLAI(«Amatche(h Dunmatched7 nnmatched7 T)

15 /* NLLAI is Algorithm 2 */

16 for (d,t) in Al icheq dO

17 | Apply KF with updated standard deviation &

18 end

19 T = T\nnmatched

20 for d in D.,matchea dO

21 | T =TuU{d} where d = {§;,6i}i—1

22 end

23 end

standard deviations are also applied to generating new tracklets
with unmatched detections (see Lines 20-22).

D. UQ on Collaborative Object Detection

We use direct modeling [12], [39] to estimate the standard
deviation of each variable of the COD stage. We assume that all
variables are independent and the distribution of each variable
is a single-variate Gaussian distribution. For the distribution
of each variable of the ground truth, we assume it as a Dirac
delta function [39]. Then we define the regression loss function
for the ¢-th variable as the Kullback-Leibler (KL) divergence
between the single-variate Gaussian distribution and the Dirac
delta function [40]:

(yi — 9:)°
262
where y; is the ground-truth value for ¢-th variable. An additional
regression header is incorporated to forecast all standard devi-
ations &;, with a comparable structure as the regression header
for g;. This is accomplished based on the original collaborative
object detector where no alterations have been made to the

remaining components.

After we have the trained object detection model, we com-
pute the quantile for the standard deviation of each variable
by CP [31] based on the validation dataset, as introduced in
Section III-B.

We define the score function for the i-th variable as:

lyi — Gi(xs)]

Lo (i, i, 65) = + log |54, (3)

3(331'7%') = 5 (4’)
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where x; is the point cloud input and it can be comprehended
as a multiplicative correction factor applied to the standard
deviation where s(z;,y;)0;(x;) = |y; — Ui(z;)|. After testing
the detection model on the validation dataset and calculating the
score function, we obtained a set of scores { s;1, S;2, . - ., Siar } for
the ¢-th variable where M is the number of all detected objects
in all the frames in the validation set. Given an error rate o,
we select the quantile ¢; as the [A=e)a+M)] quantile of the
score set. The prediction set for z; is constructed following the
proposition.

Proposition 1: When we assume the uncertain scalar for -
th variable follows the Gaussian distribution with mean ; (z;)
and standard deviation 6;(z;) and select the score function as

s(zi,yi) = W in CP, the prediction set for ¢-th variable
is Ci(x3) = [i(wi) — 64(x4) i, Ui (i) + 64(24)ds)

Proof: From Lemma M1, for a test point (Xiest =
X, Yiest = i), it holds that

Pr (}/tESt eC (Xtest)) > l1-—«a
= Pr(s(Xiest, Yiest) < i) > 1—a Eq. (1)

:>Pr(|yi_yi(xi)§q}>21—a Eq. (4)

= Pr(lyi —9i (vi) | <6 (23) @) > 1 -«
= Ci (x) = [§s (w5) — 64 (24) Gis P (24) + Gi(23)G] . (5)
O

Then we adjust the standard deviation by &; = 6;§; to achieve
rigorously estimated uncertainty.

E. Uncertainty Propagation to MOT

After obtaining the corrected standard deviation for each
variable of detected objects, how to utilize and propagate it into
the MOT stage remains a significant challenge. Here, we propose
SDKF and NLLAI methods to leverage the uncertainty in both
the motion prediction and association which are the primary
steps of MOT.

Standard Deviation-based Kalman Filter (SDKF): As shown
in Section II, Kalman Filter (KF) [41] is one important step for
motion prediction. The inputs of KF encompass the observed
state and measurement uncertainty. Compared to the existing
MOT algorithm, we leverage our rectified standard deviation
as the measurement uncertainty in place of the pre-established
values. By taking into account both the mean and standard
deviation of the detections, we are able to better account for the
uncertainty of objects and provide more robust tracklets over
time. SDKF does not significantly impact the time complexity
of algorithms, as it only modifies the measurement uncertainty
input from fixed values to rigorously estimated ones.

Negative Log Likelihood-based Association Improvement
(NLLAI): Using Intersection over Union (IoU)-based similarity
score cannot match low-quality detection results as shown in
Section I, which poses a significant challenge during the as-
sociation stage. To address this issue, we propose the NLLAI
technique as shown in Algorithm 2. We first define Negative Log
Likelihood (NLL) between the predicted locations of tracklets
and the detected locations as a novel similarity score:

snll = —

I
Zlog P93y, 04), (6)
i1

~| =
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Algorithm 2: NLL-Based Association Improvement
method (NLLAI).

Data: Matched detection and tracklet list A, qtcheds
unmatched detection list Dy matehed, Unmatched
tracklet list Tunmatehed, NLL threshold

Result: New association results A, cheds Ponmatcheds

L . 7:L,'rm’un.fch,ed
1 Similarity matrix SNLL = N LL(Dynmatcheds Tunmatched)

2 AnLa,t(,hgd < assoicate Dunmatchcd and nnmatchcd by
Hungarlan Algorithm with SNLL
Du7LnLatL}Led — @ 7—u/nm,u.tched — @
for (d t) in Amm‘rhed do
if SNLL(d,t) > 7 then

matz,hed\{(d t)}

Dunmatched u{d

/
Enmatched = 7:tnmatched U {t}
end

unmatched —
!

3
4
5
6 'Amatz,hed
/
7
8
9

10 end
’ _ ’
1 Amatched - Amatched u Amatched

where g, is the predicted value for the i-th variable of the tracklet
from the motion prediction model such as KF. As Section III-D,
the distribution of each ¢-th variable for detected objects is a
single-variate Gaussian distribution where g; is the mean and &;
is the standard deviation. Given the set of unmatched detections
and unmatched tracklets after the original association method,
we compute the NLL similarity matrix SN LL with (6) (see
Line 1).

Then we utilize the Hungarian algorithm to establish asso-
ciations between unmatched detections and unmatched track-
lets based on SNLL. To eliminate matched pairs with high
NLL scores, we introduce a hyperparameter denoted by 7 as
the NLL score threshold. Specifically, any matched pairs with
snyrr > 7 shall be deemed ineligible for further consideration
(see Lines 4-10).

The time complexity of NLLAI depends on the number of
input unmatched detections Np and the number of input un-
matched tracklets Np. The time complexity of computing NLL
can be optimized to be O(1) [42], so computing the similarity
matrix needs O(Np Nr) time. Assuming Np > N, the time
complexity of associating with the Hungarian Algorithm can be
O(N3) [36]. Thus the time complexity of our NLLAIis O(N3)
which is polynomial.

IV. EXPERIMENT

A. Experimental Setups

We evaluate the uncertainty propagation framework MOT-
CUP using the V2X-Sim dataset [6], which comprises 80 scenes
for training, 10 scenes for validation, and 10 scenes for testing.
V2X-Sim was generated using the CARLA simulation [43].
Each scene includes 100 time-series frames and features 2-5
connected vehicles, from which 3D point clouds are collected
using LiDAR sensors. Except for V2X-Sim, there are currently
no other open-source datasets tailored explicitly to support COD
and MOT. Therefore, our experiments focus solely on utilizing
the V2X-Sim dataset. The host machine is a server with Intel
Core 19-10900X processors and four NVIDIA Quadro RTX
6000 GPUs.
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MOT methods use the tracking-by-detection framework. Ob-
ject detection quality has a significant impact on tracking per-
formance [14]. We consider three collaborative object detectors
for all tracking approaches as follows:

Lower-bound (LB) [6]: The single-agent object detector,
which operates independently by utilizing point cloud data from
one single LiDAR sensor without the need for collaboration with
other detectors.

DiscoNet (DN) [10]: The intermediate collaborative object
detector employs a directed graph with matrix-valued edge
weight to dynamically aggregate features from various agents.

It demonstrates a favorable trade-off between performance
and bandwidth.

Upper-bound (UB) [6]: The early collaborative object detector
employs raw point cloud data from all connected vehicles to fa-
cilitate collaboration. This detector achieves high performance,
while retaining lossless information. However, the approach
often requires high communication bandwidth.

We apply our uncertainty propagation framework to two
tracking baselines, SORT [14] and ByteTrack [13], and compare
their performance in accuracy and uncertainty. SORT [14] is a
pragmatic approach with simple, effective algorithms by using
the Kalman Filter for estimation and the Hungarian algorithm for
data association. Instead of only associating detection boxes with
high scores, ByteTrack [13] also utilizes similarities between
the low score detection boxes and tracklets to improve the
performance on data association. In our MOT-CUP, we select the
NLL threshold 7 = 1000 for SORT and 7 = 80 for ByteTrack.
Other hyperparameters such as the IoU threshold, are directly
inherited from the original designs of [6], [13], [14], [31].

B. Evaluation Metrics

Accuracy Metrics:

Higher Order Tracking Accuracy (HOTA) [44]: captures the
effect of accurate object detection, association, and localization
in a well-balanced way. Such a unified measure captures the
synergistic impact of these critical aspects and most compre-
hensively assesses the algorithm’s effectiveness.

Multiple Object Tracking Accuracy (MOTA) [45]: quantifies
missed detections, false positives and false negatives for detec-
tion, and identity switches for the association.

Multiple Object Tracking Precision (MOTP) [45]: measures
the ability to estimate precise object locations.

Frames Per Second (FPS): refers to the number of frames
processed per second, and measures the time complexity.

Itis important to note that higher values of the aforementioned
performance metrics indicate better performance in the context
of MOT evaluation. When assessing the performance of MOT
algorithms on the same object detector, even slight improve-
ments in HOTA, MOTA, and MOTP mean good progress, as
reported by [13], [28].

Uncertainty Metrics:

Negative Log Likelihood (NLL) [46]: a prevalent metric em-
ployed to assess the level of uncertainty in the predicted proba-
bility distribution of a given test dataset [3], [28], [30].

Continuous Ranked Probability Score (CRPS) [47]: measures
the discrepancy between predicted and ground-truth probability
distributions [48], [49].

Lower values indicate more precise uncertainty estimation for
these two uncertainty metrics under consideration.
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TABLE I
PERFORMANCE EVALUATION OF OUR UNCERTAINTY PROPAGATION
FRAMEWORK ON DIFFERENT MOT BASELINES AND OBJECT DETECTORS

Base |Detector | Method | HOTA 1 |MOTA 1 |MOTP 1 |FPST
UB Base | 41.34 52.60 85.42 | 1026

Our 42.19 53.72 86.07 | 877

SORT DN Base | 41.80 50.79 85.42 | 1052
[14] Our 42.49 51.73 85.85 | 885
LB Base | 31.28 27.09 85.62 [ 1568

Our 31.69 27.70 85.69 |1317

UB Base | 42.05 52.90 84.47 |1251

Our 42.56 53.77 85.49 1067

Byte- DN Base | 42.64 51.48 84.01 [1153
Track Our 43.14 52.28 84.94 |1074
[13] LB Base | 32.27 29.15 84.57 1637
Our 32.55 29.65 84.97 | 1457

TABLE IT

PERFORMANCE EVALUATION OF OUR MOT-CUP FRAMEWORK ON VARIOUS
OCCLUSION-LEVEL SCENARIOS

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 4, APRIL 2024

Scenario |[Method| HOTA 1 MOTA 1 MOTP 1
High Base 29.00 34.57 68.13
OCL Our [30.16 (4.01%)|36.14 (4.52%)|68.85 (1.06%)
Low Base 43.51 57.24 85.51
OCL Our [44.25 (1.71%)|58.03 (1.39%)[86.07 (0.67%)

C. Accuracy Evaluation

The outcomes of our framework on the V2X-SIM dataset with
three distinct object detectors and two diverse MOT baselines
are presented in Table 1. The results indicate that our MOT-
CUP framework is capable of leveraging quantified uncertainty
from COD to enhance the performance of all original MOT
algorithms, with up to 0.85 improvement on HOTA, up to 1.13
improvement on MOTA and up to 1.03 improvement on MOTP.
The performance of object detectors can significantly impact
the performance of MOT. Specifically, when the object detector
is capable of detecting more objects, such as Upper-bound, our
framework can significantly enhance the performance of MOT
algorithms.

MOT-CUP on high occlusion-level scenarios: We divide the
entire test dataset into two subsets: one with high occlusion sce-
narios and the other with low occlusion scenarios. We conduct
experiments using our MOT-CUP with SORT and Upper-bound,
as in Table II. The results demonstrate that our MOT-CUP ex-
hibits superior improvements in high occlusion-level scenarios,
with a notable 4.01% enhancement in HOTA compared to a
1.71% improvement in HOTA for low occlusion-level scenar-
ios. In high occlusion-level scenarios, the presence of poorly
detected objects caused by occlusion leads to high uncertainty,
which our SDKF and NLLATI utilize to enhance the tracking
performance.

Fig. 3 presents visualizations of Upper-bound, original SORT,
and our MOT-CUP framework’s results over three consecu-
tive frames. Our MOT-CUP outperforms the original SORT in
tracking object 332, as indicated by the red arrow. Moreover,
our MOT-CUP improves location accuracy, as shown for ob-
ject 332 in frame 60, compared to the object detector. These
results showcase the effectiveness of our approach in accurately
tracking objects, even in challenging scenarios with poor detec-
tion or occlusion. Additionally, incorporating uncertainty into
the Kalman Filter and association step enables better tracking
performance over time.
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Fig. 3. Visualization of results of the detection, original SORT, and our MOT-

CUP framework over consecutive three frames. The collaborative object detector
here is Upper-bound. Green boxes are ground truth bounding boxes, orange
boxes are detected bounding boxes, and red boxes are tracklets’ bounding boxes
as the output of MOT. The numbers next to the red boxes indicate object IDs.
We observe that our MOT-CUP outperforms the original SORT algorithm in
tracking object 332, as indicated by the red arrow. Furthermore, MOT-CUP
improves the accuracy of location, compared with the object detector, such
as object 332 in frame 60. Overall, our results demonstrate the importance of
considering uncertainty in MOT.

D. Uncertainty Evaluation

We use Negative Log Likelihood (NLL) [46] and Continuous
Ranked Probability Score (CRPS) [47] at IoU thresholds of
0.5 and 0.7 as the uncertainty measurement. We compare the
uncertainty results of different UQ methods on object detection
and MOT-CUP, including dropout (DO), deep ensemble (DE),
and our conformal prediction (CP) in Table III. The vanilla
baseline only utilizes direct modeling (DM). The implemen-
tations of DO and DE are as same as [1]. The representation
formats of bounding boxes utilized by SORT and ByteTrack
diverge, necessitating the training of distinct detection models.
Consequently, the results on uncertainty are dissimilar between
SORT and ByteTrack.

For NLL, CP outperforms all baselines, with up to 41x
improvement. In particular, CP achieves up to 95% reduction
compared to DO and DE. Furthermore, in comparison to object
detection, our MOT-CUP framework with CP produces precise
uncertainty estimation, with up to 2.67x improvement. The
vanilla object detection shows a significantly large NLL for the
DM overfits the training dataset and overestimates the uncer-
tainty of the test dataset.

Compared with all baselines, CP can effectively reduce the
CRPS, with up to 37% reduction. Specially, it achieves up
to 31%, 37% and 35% reduction compared with the vanilla
baseline, DO and DE. The reason that DO and DE increase the
CRPS might be they cannot fully capture the entire distribution
of possible values while CRPS requires the entire predicted
distribution to be considered [48].
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TABLE III
NLL & CRPS COMPARISONS ON DETECTION AND MOT-CUP WITH DIFFERENT UNCERTAINTY QUANTIFICATION METHODS: DROPOUT (DO), DEEP ENSEMBLE
(DE) AND CONFORMAL PREDICTION (CP)

- NLL @loU=05 | | NLL @loU=0.7 | | CRPS @IoU=0.5 | | CRPS @loU=0.7 J.
Base | Method | DO DE | CP =51 UB [DN [ LB [ UB [ DN [ LB | UB | DN | LB
193 | 222 335 96 147 166 |0.45310.498 | 0.693 [ 0.39210.459|0.514
Detection v 81.01[52.97| 263 [36.05[26.98| 124 [0.512]0.554(0.745[0.453|0.517 [ 0.572
v 44.01 14698 | 128 |[23.64(29.30(63.80(0.482]0.518]0.703 |0.423 | 0.480 | 0.531
SORT Vv 257702621 25.17 [ 14.54[19.50 | 13.04 [ 0.424 [0.466 | 0.652 [ 0.364 | 0.427 | 0.475
[14] 061 |12.00| 14.45 | 7.87 |11.21 | 11.06 | 0.312 | 0.355 | 0.463 | 0.297 | 0.347 | 0.400
MOT-CUP v 654 | 348 | 1834 | 438 | 344 [ 11.40[0.345[0.379(0.489 | 0.331|0.374 | 0.436
Ve 256 | 231 | 6.15 | 2.17 | 2.23 | 3.82 [0.338 [ 0.360 | 0.483 [ 0.324 [ 0.354 | 0.431
v 1094|095 | 1.30 | 0.74 | 0.90 | 1.06 | 0.301 | 0.336 | 0.444 | 0.286 | 0.329 | 0.392
1801 | 540 461 870 198 121 10.39210.391|0.597 | 0.338 | 0.357 | 0.358
Detection v 101 [35.08| 269 [41.17[24.86] 101 |[0.524|0.561[0.792 | 0.468 | 0.531 | 0.550
Ve 72.56 | 38.41 | 156.59 [ 35.99 [ 30.51 [ 57.10] 0.492 [ 0.523 [ 0.753 [ 0.436 | 0.493 | 0.518
Byte- v [43.65[32.50 ] 68.94 [23.47[19.25[11.78[0.381[0.376|0.596 | 0.328 [ 0.343 | 0.358
Track 294912530 57.23 [ 17.67 | 17.57 | 11.27 [ 0.302 [ 0.318 | 0.412 [ 0.276 | 0.308 | 0.310
[13] MOT-CUP v 2435] 7.66 | 26.43 | 6.97 | 7.37 |21.70 [ 0.385[0.436 | 0.532 [ 0.359 | 0.432 [ 0.437
v 2352 11.61| 24.62 | 6.20 | 9.89 |20.77 [ 0.362 [ 0.406 | 0.512 | 0.336 | 0.402 | 0.421
v [20.01] 694 | 4.05 | 2.41 | 1.99 | 0.99 [0.280 [ 0.286 | 0.376 | 0.254 | 0.275 | 0.276
The best results are shown in bold.
TABLE IV
ABLATION STUDY ON MOT WITH THE UPPER-BOUND AND DISCONET DETECTORS
Upper-bound DiscoNet
Base | CP | SDKF | NLLAT —ppa— MOT[./)APT MOTP T | FPS T | HOTA T | MOTA T | MOTP T | FPS T
1134 52.60 85.42 1026 | 41.80 50.79 8542 1052
7 1167 52.35 86.25 962 023 50.79 86.15 985
7 134 52.60 85.42 865 41.80 50.79 85.42 873
SORT [V 7 41.80 52.65 86.20 991 0723 50.93 36.00 993
(4] v 7 73 53.50 8481 911 41.98 51.32 8470 399
7 7 1167 5235 86.25 841 03 50.80 86.15 852
7 7 7 019 5372 86.07 877 249 5173 85.85 885
12.05 52.90 8447 1251 | 4264 5148 8401 1153
7 1249 33.63 85.82 1195 | 42.85 52.13 8529 1078
Byte- 7 42.06 52.97 8445 1072 | 4267 5161 33.08 1010
Track [ v 7 .62 53.85 85.54 1219 | 43.00 5201 85.04 1141
(131 [ 7 12 5321 84.30 1057 | 42.68 51.65 83.80 1029
7 7 42.50 53.68 85.80 1091 12.89 52.26 $5.26 1042
7 7 7 1256 53.77 85.49 1067 | 43.14 52.28 84.94 1074

The best results are shown in bold.

E. Ablation Study on Accuracy

We conduct an ablation study to evaluate the contributions of
each proposed technique in our MOT-CUP framework as shown
in Table IV with two different detectors and two diverse MOT
baselines. CP is shown to contribute significantly to both SDKF
and NLLAI NLLAI, which focuses on refining the association
step with a new SNLL metric, yields marked improvements
in metrics capturing associations such as HOTA and MOTA.
However, an increase in matching potential may lead to a decline
inthe precision of object localization, as reflected by the decrease
in MOTP metric. In contrast, SDKF, where the Kalman Filter
takes the COD uncertainty information as its input, primarily
enhances metrics measuring localization, such as HOTA and
MOTP, thereby improving the accuracy of object localization
estimates. Notably, our proposed framework combined with
diverse collaborative object detectors and MOT baselines always
achieves the optimal performance outcomes.

a) Limitation: In terms of FPS, our framework results in an
average decrease of 13.2%, yetit does not affect the real-time ca-
pacity of the MOT algorithms. It is noteworthy that the increase
in time incurred by our framework is polynomial, as discussed in
Section III. Furthermore, we have not implemented any specific
strategies aimed at optimizing the quality of code with respect
to running time. Therefore, the computational overhead of our
framework is acceptable.

V. CONCLUSION

This letter presents the first attempt to leverage uncertainty
quantification from collaborative object detection (COD) to
enhance the performance of multiple object tracking (MOT).
Our proposed framework, MOT-CUP, employs direct modeling
and conformal prediction techniques to quantify the uncertainty
in COD. The uncertainty of COD is propagated to the Kalman
Filter and the Negative Log Likelihood-based Association Im-
provement (NLLAI) procedure of MOT. We evaluate MOT-CUP
on various CODs and MOT baselines, and demonstrate that our
framework significantly improves both the accuracy and uncer-
tainty of the original MOT. Our findings highlight and validate
the benefits of incorporating COD uncertainty quantification into
MOT algorithms. In future work, we plan to extend our method
to popular single-agent object detection and MOT benchmarks,
such as KITTI and nuScenes, and more MOT baselines.
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