
What is the Solution for State-Adversarial Multi-Agent Reinforcement Learning?

Songyang Han1, Sanbao Su1, Sihong He1, Shuo Han2, Haizhao Yang3, Fei Miao1

1 University of Connecticut, 2 University of Illinois at Chicago, 3 University of Marryland, College Park
{songyang.han, sanbao.su, sihong.he, fei.miao}@uconn.edu, hanshuo@uic.edu, hzyang@umd.edu

Abstract

Various types of Multi-Agent Reinforcement Learning
(MARL) methods have been developed, assuming that
agents’ policies are based on true states. Recent works have
improved the robustness of MARL under uncertainties from
the reward, transition probability, or other partners’ policies.
However, in real-world multi-agent systems, state estimations
may be perturbed by sensor measurement noise or even ad-
versaries. Agents’ policies trained with only true state in-
formation will deviate from optimal solutions when facing
adversarial state perturbations during execution. MARL un-
der adversarial state perturbations has limited study. Hence,
in this work, we propose a State-Adversarial Markov Game
(SAMG) and make the first attempt to study the fundamen-
tal properties of MARL under state uncertainties. We prove
that the optimal agent policy and the robust Nash equilibrium
do not always exist for an SAMG. Instead, we define the so-
lution concept, robust agent policy, of the proposed SAMG
under adversarial state perturbations, where agents want to
maximize the worst-case expected state value. We then de-
sign a gradient descent ascent-based robust MARL algorithm
to learn the robust policies for the MARL agents. Our ex-
periments show that adversarial state perturbations decrease
agents’ rewards for several baselines from the existing liter-
ature, while our algorithm outperforms baselines with state
perturbations and significantly improves the robustness of the
MARL policies under state uncertainties.

1 Introduction
Multi-Agent Reinforcement Learning (MARL) has been
studied and successfully applied to solve problems such
as multi-robot coordination (Hüttenrauch and Šošić 2017),
multi-agent communication (Sukhbaatar, Szlam, and Fer-
gus 2016), sequential social dilemmas (Leibo and Zambaldi
2017), resource management (Pretorius, Cameron et al.
2020), etc. The non-stationary training environment issue
is addressed by using an actor-critic framework in (Lowe
et al. 2017; Foerster and Farquhar 2018). However, Deep
Reinforcement Learning (DRL) policy is highly vulnerable
under adversarial state perturbation attacks (Behzadan and
Munir 2017; Pattanaik and Tang 2017; Xiao, Pan et al. 2019;
Huang et al. 2017; Lin et al. 2017). Even a slight state per-
turbation can lead the DRL policy to a completely different
action (Huang et al. 2017; Lin et al. 2017). This is a sig-
nificant issue, especially for safety-critical systems like au-

tonomous vehicles, e.g. adding paint in an adversarial way
to the surface of a road can confuse an autonomous vehicle’s
lane-following policy and cause potential accidents (Ku-
rakin, Goodfellow, and Bengio 2016). Therefore, it is im-
portant to have a robust policy: a well-trained agent should
behave well under adversarial state perturbations.

Additionally, in real-world applications, agents may not
have the perfect state information due to sensor measure-
ment noise, poor weather, or illumination conditions (Liu
et al. 2021; Kothandaraman, Chandra, and Manocha 2021).
For agents trained in simulation with true state information,
the policy may have poor performance in practice, which
is usually known as sim-to-real gaps (Jiang et al. 2021;
Sallab et al. 2017; Han et al. 2022). Perturbed or adver-
sarial observation issues have been investigated in single-
agent DRL to narrow the gap between the simulation and the
real world (Pinto, Davidson, and Sukthankar 2017; Zhang
et al. 2020a) or to defend against adversarial attacks (Xiao,
Pan et al. 2019; Pattanaik and Tang 2017; Pattanaik et al.
2018; Mandlekar et al. 2017). The adversarial state pertur-
bation problem cannot be characterized by the existing re-
search in the partially observable Markov decision process
(POMDP) or Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) (Oliehoek, Amato et al.
2016; Lerer et al. 2020), as the conditional observation prob-
ability cannot capture the worst-case state uncertainty under
adversarial attacks. Adversarial perturbations have a much
more powerful impact on an agent’s policy than random
noise (Kos and Song 2017; Pattanaik et al. 2018). However,
it remains challenging to deal with adversarial state pertur-
bations in MARL, as the problem is more complicated con-
sidering the interaction among all the agents and the adver-
saries. Therefore, it is crucial to study the fundamental prop-
erties of MARL under adversarial state perturbations.

In this work, we make the first attempt to study the chal-
lenges and fundamental properties of robust MARL un-
der adversarial state perturbations. We formulate a State-
Adversarial Markov Game (SAMG) to study the properties
and solution concepts of MARL under adversarial state per-
turbations. We prove that the optimal agent policy or ro-
bust Nash equilibrium does not always exist under adver-
sarial state perturbations. Instead, we propose a new solu-
tion concept, the robust agent policy, and prove that the
robust agent policy exists for finite state and finite action

ar
X

iv
:2

21
2.

02
70

5v
2 

 [
cs

.A
I]

  7
 D

ec
 2

02
2



spaces. We design an algorithm, called Robust Multi-Agent
Reinforcement Learning (RMARL), to train robust policies
of all agents with adversarial state perturbations. The algo-
rithm uses Gradient Descent Ascent (GDA) optimizer (Lin,
Jin, and Jordan 2020) to update each agent’s policy network
and each adversary’s policy network. Our experiment results
show that the proposed RMARL algorithm improves the ro-
bustness of the agents’ policies compared with the existing
MARL literature. To the best of our knowledge, we propose
the first mathematical formulation and algorithm that con-
siders state perturbations in MARL with both theoretical and
empirical justifications.

In summary, the main contributions of this work are:
• We formulate a State-Adversarial Markov Game

(SAMG) to study the fundamental properties of MARL
under adversarial state perturbations. We prove that the
classical solution concept such as optimal agent policy
or robust Nash equilibrium does not always exist.

• Instead, we define a new solution concept, robust agent
policy, to maximize the worst-case expected state value.
We prove the existence of the robust agent policy for
an SAMG with finite state and finite action spaces. We
propose a Robust Multi-Agent Reinforcement Learning
(RMARL) algorithm to solve the challenge of training
robust policies under adversarial state perturbations.

• We empirically evaluate our proposed RMARL algo-
rithm in experiments. Our algorithm outperforms base-
lines with random or adversarial state perturbations and
improves agent policies’ robustness under state uncer-
tainties.

The rest of this paper is organized as follows. We intro-
duce related work in Section 2. In Section 3, we define the
problem formulation of the SAMG. The solution concepts
are studied for agents and adversaries of the SAMG in Sec-
tion 4. In Section 5, we propose an algorithm for finding
a robust policy for the MARL agents. The experiments are
shown in Section 6. In Appendix, we provide detailed proof,
implementation details, and discussions about future work.

2 Related Work
Multi-Agent Reinforcement Learning (MARL) The
MARL has a long history in the AI field (Hu, Wellman et al.
1998; Busoniu, Babuska, and De Schutter 2008). Recent
works have been investigated to encourage the collaboration
of the agents by assigning rewards appropriately, such as a
value decomposition network (Sunehag, Lever et al. 2018;
Rashid et al. 2020; Su, Adams, and Beling 2021), subtract-
ing a counterfactual baseline (Foerster and Farquhar 2018),
or an implicit method (Zhou et al. 2020). Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) proposes a cen-
tralized Q-function to alleviate the problem caused by the
non-stationary environment (Lowe et al. 2017). The scala-
bility issue of MARL can be alleviated by adding attention
to the critic (Iqbal and Sha 2019), using neighbor informa-
tion (Qu et al. 2020), or using V-learning (Jin et al. 2021).
The “team stochastic game” (Muniraj, Vamvoudakis, and
Farhood 2018) splits the MARL agents into two teams to
compete. However, during training, all methods assume that

agents get the true state value. None of the recent MARL
advances specifies how to deal with perturbed state values
by malicious adversaries.

Robust Reinforcement Learning Most existing robust
MARL works focus on uncertainties in reward, transition
dynamics, and training partners’ policies, while our work fo-
cus on uncertainties in the state. Robust reinforcement learn-
ing can be traced back to (Morimoto and Doya 2005) in
the single-agent setting. Combined with deep learning tech-
niques, the robust MARL is recently studied considering dif-
ferent types of uncertainties in reward (Zhang et al. 2020b),
transition dynamics (Zhang et al. 2020b; Sinha, O’Kelly
et al. 2020; Hu et al. 2020; Yu et al. 2021b), training part-
ner’s type (Shen and How 2021), and training partners’ poli-
cies (Li et al. 2019; van der Heiden et al. 2020; Sun, Kim,
and How 2021). The work in (Zhang et al. 2020b) considers
the robust equilibrium of multi-agents with reward uncer-
tainties where agents can get true state information at each
stage. The work in (Shen and How 2021) considers uncertain
training partner’s type (e.g. adversary, neutral, or teammate)
to the protagonist in two-player scenarios. The M3DDPG
algorithm extends the MADDPG to get a robust policy for
the worst situation by assuming all the training partners are
adversaries (Li et al. 2019). However, none of the above
MARL works consider the state perturbations.

There are some works (Mandlekar et al. 2017; Pattanaik
et al. 2018; Zhang et al. 2020a, 2021) considering the robust
policy under adversarial state perturbations in single-agent
reinforcement learning. Though the work (Lin et al. 2020)
studies state perturbation, only one single agent’s state ob-
servation can be perturbed in their MARL. In this work, we
focus on the more challenging multi-agent cases where each
agent’s state observation can be perturbed by an adversary.

3 State-Adversarial Markov Game (SAMG)
We formulate a State-Adversarial Markov Game (SAMG)
with n agents in the agent set N = {1, ..., n}. Each agent
i is associated with an action ai ∈ Ai. The global joint ac-
tion is a = (a1, ..., an) ∈ A, A := A1 × · · · × An. The
global joint state is s ∈ S. All agents share a stage-wise
reward function r : S × A → R. The total expected re-
turn is

∑∞
t=0 γ

trt+1(st, at) where γ is a discount factor.
We consider that each agent is associated with an adver-
sary as shown in Fig. 1. Each adversary decides a perturbed
state ρi ∈ S for the corresponding agent as the agent’s
perturbed knowledge or observation about the global state.
We denote the joint perturbed state as ρ := [ρi]i∈N . We
consider the admissible perturbed state as a task-specific
“neighboring” state of s, e.g. the bounded sensor measure-
ment errors, to model the real-world challenges of getting
accurate states for multi-agent systems like connected and
autonomous vehicles and multi-robots systems (Liu et al.
2021; Kothandaraman, Chandra, and Manocha 2021). To an-
alyze a realistic problem, the power of the state perturba-
tion should also be limited (Everett, Lütjens, and How 2021;
Zhang et al. 2020a). We define an admissible perturbed state
set Ps to restrict the perturbed state only to be within a pre-
defined subset of states such that ρ ∈ Ps:



Definition 1 (Admissible Perturbed State Set). We con-
sider the set of admissible perturbed state for agent i at state
s as Pis ⊆ S. Denote the joint admissible perturbed state set
at state s as Ps := P1

s × · · · × Pns .

Note that the true state is included in the admissible per-
turbed state set, i.e., s ∈ Pis for any i ∈ N . For example,
consider a 2-agent 3-state system with S = {s1, s2, s3}.
When the current true state is s1 for both agents, adver-
sary 1 perturbs agent 1’s state observation within P1

s1 =
{s1, s2}; adversary 2 perturbs agent 2’s state observation
within P2

s1 = {s1, s3}.
The state perturbation reflects the state uncertainty from

the perspective of each agent, but it does not change the true
state of multi-agent systems. The state transition function is
p : S×A → ∆(S), where ∆(S) is a probability simplex de-
noting the set of all possible probability measures on S. The
state still transits from the true state to the next state. Each
agent is associated with a policy πi : S → ∆(Ai) to choose
an action ai ∈ Ai given the perturbed state ρi. Note that
the input of πi is the perturbed state ρi. The perturbed state
affects each agent’s action. The set ∆(Ai) includes all possi-
ble probability measures onAi. We use π = (π1, π2, ..., πn)
to denote the joint agent policy.

The adversary policy, i.e. the state perturbation policy, as-
sociated with agent i is χi(·|s) : S → ∆(Pis), where the
input of χi is the true state s ∈ S . The power of the adver-
sary is limited by the admissible perturbed state set Pis. We
denote the joint adversary policy as χ = (χ1, χ2, ..., χn).
The agents want to find a policy π to maximize their total
expected return while adversaries want to find a policy χ to
minimize the agents’ total expected return.

Environment

Agent 𝑛

𝑟!"#

𝑠 !

𝑅𝑒𝑤𝑎𝑟𝑑

𝑆𝑡
𝑎𝑡
𝑒

𝑃𝑒𝑟𝑡𝑢𝑟𝑏𝑒𝑑	𝑆𝑡𝑎𝑡𝑒

𝑠!"#

Adversary 𝑛

𝑟!$

Adversary 1

𝜌!"~𝜒"	(𝜌"|𝑠)
⋮

Agent 1
𝜌!#~𝜒#	(𝜌#|𝑠)

𝑟!#⋮

𝑎!$~𝜋$ 	(𝑎$|𝜌$)
𝐴𝑐𝑡𝑖𝑜𝑛

Figure 1: Multi-agent reinforcement learning under adver-
sarial state perturbations. Each agent is associated with an
adversary to perturb its knowledge or observation of the true
state. Agents want to find a policy π to maximize their total
expected return while adversaries want to find a policy χ to
minimize agents’ total expected return.

Our SAMG problem cannot be solved by the existing
work for single-agent reinforcement learning with adver-
sarial state perturbations (Mandlekar et al. 2017; Pattanaik
et al. 2018; Zhang et al. 2020a, 2021). Each agent’s action
in SAMG is selected based on its own perturbed state obser-
vation and the state knowledge of each agent can be different
after adversarial perturbations, so the SAMG problem can-
not be solved by the above single-agent RL where the agent

has only one state observation at each stage.
Our SAMG problem cannot be solved by the existing

work in the Decentralized Partially Observable Markov De-
cision Process (Dec-POMDP) (Oliehoek, Amato et al. 2016;
Lerer et al. 2020). In contrast, the policy in SAMG needs to
be robust under a set of admissible perturbed states. The ad-
versary aims to find the worst-case state perturbation policy
χ to minimize the MARL agents’ total expected return, but
the Dec-POMDP cannot characterize the worst-case state
perturbations. Moreover, all the agents cannot get the true
state s in Dec-POMDP, while in an SAMG, the true state s is
known by the adversaries. Adversaries can take the true state
information and use it to select state perturbations for the
MARL agents. More details about the connection between
Dec-POMDP and SAMG are included in Appendix A.

Moreover, our SAMG problem cannot be solved by ro-
bust Markov games considering the uncertainties from re-
ward (Zhang et al. 2020b), transition dynamics (Zhang et al.
2020b; Hu et al. 2020; Sinha, O’Kelly et al. 2020; Yu et al.
2021b), training partner’s policies (Li et al. 2019; van der
Heiden et al. 2020), because the MARL agents do not know
the true state information after adversarial perturbations.
Hence, we define the corresponding solution concepts of the
policies for the adversaries and the agents, and analyze the
properties of the policies for the SAMG in the next section.

4 Solution Concepts
In this section, we study the solution concepts of the SAMG.
We formally define the optimal adversary policy, optimal
agent policy, and robust Nash equilibrium. We then show
that under the optimal adversary policy, the optimal agent
policy or robust Nash equilibrium does not always exist. In-
stead, we propose a new objective, the worst-case expected
state value, and prove that there exists a robust agent policy
to maximize it.

We first introduce the widely used state value function
concept for our proposed SAMG as follows:

Vπ,χ(s) = Eat∼π(·|ρt),ρt∼χ(·|st)

[ ∞∑
t=0

γtrt+1(st, at)|s0 = s

]
,

(1)
where γ is the discount factor.

4.1 Optimal Adversary Policy
For a fixed agent policy π, the optimal (worst-case) adver-
sary χ∗(π) aims to minimize the agents’ total expected re-
turn, that is to say,

Vπ,χ∗(π)(s) = min
χ
Vπ,χ(s). (2)

The following proposition shows the existence of the opti-
mal adversary for an SAMG.

Proposition 1 (Existence of Optimal Adversary Policy).
Given an SAMG G = (N ,S,A, r,Ps, p, γ), for any fixed
agent policy π, there exists an optimal adversary policy χ∗
such that Vπ,χ∗(π)(s) ≤ Vπ,χ(s) for any s ∈ S and any χ.

Proof. See proof in Appendix B.



The key process of the proof is constructing an MDP for
the adversary where the adversary gets the negative of the
agent reward. Since for an MDP with finite state and finite
action spaces, there always exists an optimal policy [Theo-
rem 6.2.10 in (Puterman 2014)], the optimal adversary pol-
icy χ∗ of the corresponding SAMG always exists as well.

4.2 Optimal Agent Policy
The optimal adversary policy is very powerful and it can eas-
ily corrupt the MARL agents’ policies through state pertur-
bations. We first define the optimal agent policy as follows:
Definition 2 (Optimal Agent Policy). Under the optimal
adversary policy χ∗, an agent policy π∗ is an optimal policy
if Vπ∗,χ∗(π∗)(s) ≥ Vπ,χ∗(π)(s) for any π and all s ∈ S.

In the following theorem, we show that the optimal agent
policy π∗ does not always exist for an SAMG under the op-
timal state perturbation adversary.
Theorem 1 (Non-existence of Optimal Agent Policy).
Under the optimal adversary policy χ∗, an optimal agent
policy π∗ does not always exist for an SAMG such that
Vπ∗,χ∗(π∗)(s) ≥ Vπ,χ∗(π)(s) for any π and all s ∈ S.

Proof. See proof in Appendix B.

The proof is done by constructing a counterexample
where there is no optimal policy for the agents. An opti-
mal agent policy π∗ should maximize the state value for all
states. However, under the adversarial state perturbations,
sometimes agents have to make trade-offs between different
state values and no agent policy can maximize all the state
values.

4.3 Robust Nash Equilibrium
Then we look at the widely used Nash equilibrium concept
in MARL for an SAMG. A Nash equilibrium is used to de-
scribe policies where no agent wants to deviate unilaterally.
If an agent deviates from a Nash equilibrium, its total ex-
pected return won’t increase. In a robust Nash equilibrium,
we consider each agent is associated with an adversary that
tries to minimize its total expected return.
Definition 3 (Robust Nash Equilibrium). For an SAMG,
the policy (π∗, χ∗) is a robust Nash equilibrium if for all
s ∈ S and all i ∈ N and all πi and χi, it holds that

Vπi,π−i∗,χi∗,χ−i∗(s) ≤ Vπi∗,π−i∗,χi∗,χ−i∗(s)

≤ Vπi∗,π−i∗,χi,χ−i∗(s), (3)

where π−i and χ−i denotes the agent policies and adversary
policies of all the other agents except agent i, respectively.

Definition 3 shows that π∗ is in a robust Nash equilibrium
if each agent’s policy is a robust best response to the other
agents’ policies under adversarial state perturbations. When
agent i is calculating its robust best response, it assumes a
worst-case perspective of the state perturbations.
Theorem 2 (Non-existence of Robust Nash Equilibrium).
For an SAMG with finite state and finite action spaces, the
robust Nash equilibrium defined in Definition 3 does not al-
ways exist.

Proof. See proof in Appendix C.

The proof is done by constructing a counterexample. For
any state s ∈ S, there exists a stage-wise equilibrium among
the agents and adversaries (See details in Theorem 6 in Ap-
pendix C). However, there may not exist an equilibrium
holding for all states, because the agents do not know the
true state under adversarial state perturbations. The stage-
wise equilibrium in one state may conflict with the stage-
wise equilibrium in a different state. Sometimes agents have
to make trade-offs between different states.

4.4 Robust Agent Policy
The optimal agent policy and robust Nash equilibrium con-
cepts do not always exist in our SAMG problem according
to the non-existence analysis. Instead, we propose a new ob-
jective, the worst-case expected state value, for the SAMG:
Definition 4 (Worst-case Expected State Value). The
worst-case expected state value under the optimal state per-
turbation adversary is:

Es0∼Pr(s0)

[
Vπ,χ∗(π)(s0)

]
(4)

where Pr(s0) is the probability distribution of the initial
state.

Even though we cannot maximize all the state values,
we can use the probability of each state as an indicator of
how important each state is. In an SAMG, we have to make
trade-offs between different states. Therefore, we consider
a weighted sum of all the state values according to the ini-
tial state distribution in the worst-case expected state value.
The agent policy to maximize the worst-case expected state
value is called a robust agent policy.
Definition 5 (Robust Agent Policy). An agent policy π∗
that maximizes the worst-case expected state value is called
a robust agent policy:

π∗ = arg max
π

Es0∼Pr(s0)

[
Vπ,χ∗(π)(s0)

]
. (5)

The following proposition shows finding a robust agent
policy is equivalent to solving a maximin problem.
Proposition 2. Finding an agent policy π to maximize
the worst-case expected state value under the optimal
adversary for π is equivalent to the maximin problem:
maxπ minχ

∑
s0

Pr(s0)Vπ,χ(s0).

Proof. According to the Proposition 1, for any fixed agent
policy π, there exists an optimal adversary policy χ∗ such
that Vπ,χ∗(π)(s0) = minχ Vπ,χ(s0) for any s0 ∈ S. Thus,

max
π

Es0∼Pr(s0)

[
Vπ,χ∗(π)(s0)

]
= max

π
Es0∼Pr(s0)

[
min
χ
Vπ,χ(s0)

]
(Eq. (2))

= max
π

∑
s0

Pr(s0) min
χ
Vπ,χ(s0) (Definition of Expectation)

= max
π

min
χ

∑
s0

Pr(s0)Vπ,χ(s0), (Proposition 1) (6)



In the following theorem, we show the existence of robust
agent policy for finite state and finite action spaces.
Theorem 3 (Existence of Robust Agent Policy). For an
SAMG with finite state and finite action spaces, there exists
a robust agent policy π to maximize the worst-case expected
state value defined in Definition 4.

Proof. See proof in Appendix C.

The proof is based on the Weierstrass M-test (Rudin et al.
1976), uniform limit theorem (Rudin et al. 1976), and the
extreme value theorem. Different from the definitions of the
optimal agent policy and robust Nash equilibrium, the worst-
case expected state value objective does not require the opti-
mality condition to hold for any state s. Agents won’t get
stuck in trade-offs between different states, therefore, we
can find a robust agent policy to maximize the worst-case
expected state value for the SAMG problem.

5 Robust MARL Algorithm
In general, it is challenging to develop an algorithm to com-
pute an optimal or equilibrium policy for MARL with uncer-
tainties (Zhang et al. 2020b, 2021). It is practical to use neu-
ral networks as function approximations in MARL in case
the joint state and action spaces grow exponentially with the
total number of agents. In order to deal with massive or even
continuous state-action space, we design an actor-critic al-
gorithm based on the recent MARL advances to approximate
a robust agent policy under adversarial state perturbations.
Our algorithm adopts centralized training and decentral-
ized execution paradigm following the popular framework
in (Lowe et al. 2017). During training, there is a centralized
critic Q(s, a) that records the total expected return given the
global state s and global action a. The connection between
Q(s, a) and V (s) is that for any i ∈ N , s ∈ S, a ∈ A,

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)V (s′). (7)

Each agent’s state input for the actor is perturbed by an ad-
versary χi(·|s) : S → ∆(Pis). During execution, each agent
i selects action ai based on the perturbed state ρi ∈ S using
a trained policy πi : S → ∆(Ai). We want to find a policy
πi for each agent to maximize the worst-case expected state
value in Definition 4 under adversarial state perturbations.

As shown in Alg. 1, our algorithm has a centralized critic
network Q for training. Each agent has one actor network
πi and one adversary network χi. The critic Q takes in the
true global state and global action during the training pro-
cess. It returns a Q-value denoting the total expected re-
turn given s and a. The state transition experience is rep-
resented by (s, a, r, s′) where s′ is the next state. It is stored
in a replay buffer D for the critic network’s training. We ap-
ply ”replay buffer” and ”target network” techniques (Mnih,
Kavukcuoglu et al. 2015). The critic network is trained with
a mini-batch gradient descent optimizer in line 16. In line
18, we use Gradient Descent Ascent (GDA) optimizer (Lin,
Jin, and Jordan 2020) to update parameters for each agent’s
actor network and adversary network for the maximin prob-
lem maxπ minχ

∑
s0

Pr(s0)Vπ,χ(s0) in Proposition 2. A

Algorithm 1: Robust MARL Under Adversarial
State Perturbations

1 Randomly initialize the critic network Q, the actor
network πi, and the adversary network χi for each
agent;

2 Initialize target networks Q′, πi′, χi′;
3 for each episode do
4 The initial state s0 ← sample from Pr(s0);
5 Initialize a random process X for action

exploration;
6 for each time step do
7 for i=1 to n do
8 ρi ← sample from χi(·|s);
9 ai ← sample from πi(·|ρi) + X ;

10 end
11 Execute actions a = (a1, ..., an);
12 Obtain the reward r and the next state s′;
13 D ← D ∪ (s, a, r, s′);
14 s← s′;
15 Q← MGD Optimizer(Q,D, Q′, π′, χ′);
16 /* Mini-batch gradient descent

optimizer for critic. */
17 π, χ← GDA Optimizer(Q, π, χ);
18 /* Gradient descent ascent

optimizer for policies. */
19 Update all target networks:

θi′ ← τθi + (1− τ)θi′.
20 end
21 end

detailed introduction for the GDA optimizer is included in
Appendix D.

6 Experiments
To show the effectiveness of our algorithm, we adopt the
multi-agent particle environments developed in (Lowe et al.
2017) that have several agents and landmarks in a two-
dimensional world. The host machine adopted in our exper-
iments is a server configured with AMD Ryzen Threadrip-
per 2990WX 32-core processors and four Quadro RTX 6000
GPUs. Our experiments are performed on Python 3.5.4,
Gym 0.10.5, Numpy 1.14.5, Tensorflow 1.8.0, and CUDA
9.0. In our experiments, we consider the set of admissible
perturbed state for agent i at state s as an `∞ norm ball
around s: Pis := {ρi ∈ S : ‖ρi − s‖∞ ≤ d} where d is a
radius denoting the perturbation budget. In implementation,
the adversary network takes in the true state s and learns a
state perturbation vector ∆i and we project s + ∆i to Pis.
Our code is available online on GitHub 1. The environment
used in experiments includes cooperative navigation (CN),
exchange target (ET), keep-away (KA), physical deception
(PD), and convert communication (CC). All hyperparame-
ters used in experiments for RMARL and baselines are listed
in Appendix D with more implementation details and exper-
iment results.

1https://github.com/susanbao/RMARL code

https://github.com/susanbao/RMARL_code


Figure 2: Our RMARL algorithm compared with baseline algorithms during the training process. Our RMARL algorithm
gets higher mean episode rewards and is more robust to the state perturbations. All baselines are trained under random state
perturbations or well-trained adversary policy χ∗. Because MAPPO only works in fully cooperative tasks, we only report its
results in cooperative navigation and exchange target.

6.1 Baselines
We have in total 9 baselines in our experiment: MADDPG
(MA) (Lowe et al. 2017), M3DDPG (M3) (Li et al. 2019),
MAPPO (MP) (Yu et al. 2021a), MA/M3/MP with random
state perturbations, MA/M3/MP with well-trained adversar-
ial state perturbations. We introduce detail of these baselines
in Appendix D. To test the robustness under the state un-
certainty, we impose state noise to MADDPG, M3DDPG,
and MAPPO produced by a truncated normal distribution
N (0, λ, u, l) where λ is the uncertainty level, u and l are the
upper and lower bounds to ensure noise compact. We use
the truncated normal noise to simulate the adversaries select-
ing random state perturbations. While in our RMARL algo-
rithm, agents are trained under adversaries that try to mini-
mize the agents’ total expected return. For each scenario, we
save the well-trained adversaries χ∗ in RMARL to represent
the optimal state perturbation adversaries. We then use the
well-trained adversaries to perturb the states for MADDPG,
M3DDPG, and MAPPO to train and test their robustness un-
der adversarial state perturbations. Because MAPPO only
works in fully cooperative tasks, we only report its results in
cooperative navigation and exchange target. For both train-
ing and testing, we report statistics that are averaged across
10 runs in each scenario and algorithm.

6.2 Comparison Results
Training Comparison Under different Perturbations
We first compare our algorithm with baselines during the
training process to show that our RMARL algorithm can
outperform baselines to get higher mean episode rewards
under different state perturbations. Note that our RMARL
algorithm has a built-in adversary to perturb states, so we
do not train it under random state perturbations. Compar-
ing RMARL to other baselines with different state pertur-
bations, the RMARL gets higher mean episode rewards. It
shows our RMARL algorithm is more robust under different
state perturbations. Comparing each baseline with random
state perturbations to the same baseline with the well-trained
adversary policy χ∗, we can see the adversary trained by
the RMARL is more powerful than the random state pertur-
bations. Because the adversary policy χ∗ intentionally se-
lects state perturbations to minimize agents’ total expected

return. The mean episode reward of the last 1000 episodes
during training is shown in Table 1. Our RMARL algorithm
achieves up to 58.46% higher mean episode rewards than the
baselines under different state perturbations.

CN ET KA
RM (ours) -401.7 -47.02 -8.93
MA w/ N -506.48 -63.76 -13.76
M3 w/ N -506.54 -61.71 -13.45
MP w/ N -569.07 -94.28 -
MA w/ χ∗ -548.80 -77.01 -16.30
M3 w/ χ∗ -547.99 -75.87 -16.26
MP w/ χ∗ -585.83 -113.19 -

Table 1: Mean episode reward of the last 1000 episodes
during the training. Our RMARL algorithm achieves up to
58.46% higher mean episode rewards than the baselines.

Training Comparison With More Agents We compare
our RMARL algorithm with baselines in the cooperative
navigation scenario with more agents added. The original
cooperative navigation environment has 3 agents and the
training results are shown in Fig. 2. We show the training re-
sults with 4 agents in Fig. 3. After increasing the total num-
ber of agents in the environment, our RMARL algorithm still
gets higher mean episode rewards than baselines. We include
the training results with more than 4 agents in Appendix D.

Training Comparison With Different Perturbation Bud-
gets We compare our algorithm with baselines in the co-
operative navigation scenario with different selections of d.
We consider the set of admissible perturbed state for agent
i at state s as an `∞ norm ball around s: Pis := {ρi ∈ S :
‖ρi − s‖∞ ≤ d} where d is a radius denoting the pertur-
bation budget. As shown in Fig. 4, when d increases, adver-
saries get more freedom to perturb the state within a larger
admissible perturbed state set. As d increases, adversaries
get more powerful, and the agents’ total expected return gets
lower.

Testing Comparison in different Environments We then
test the learned policies in different environments to show



Figure 3: Our RMARL algorithm compared with baselines
during the training process in the cooperative navigation sce-
nario with more agents added. Our algorithm gets higher
mean episode rewards in the environment with an increased
agent number.

Figure 4: Our RMARL algorithm is trained in the cooper-
ative navigation environment with different selections of d.
When d increases, adversaries get more advantage/ freedom,
and may further decrease agents’ total expected return.
our RMARL policy is more robust under state perturbations.
As shown in Table 2, the mean episode rewards are averaged
across 2000 episodes and 10 test runs in each environment.
We put all the well-trained agents using different algorithms
into environments with injected random state perturbations.
The original MADDPG, M3DDPG, and MAPPO’s results
are shown as a reference for no state perturbation scenario.
The MADDPG, M3DDPG, and MAPPO get much lower
mean episode rewards after injecting random state pertur-
bations. It shows that state perturbations have a large im-
pact on the MARL and an algorithm to handle state pertur-
bations is in demand. As shown in Table 2, the RMARL
policy achieves up to 59.68% higher mean episode rewards
than baselines. It shows that the RMARL policy is more ro-
bust than baselines in environments with random state per-
turbations. Note that our RMARL’s reward is slightly lower
than MADDPG and M3DDPG because there is no uncer-
tainty in the baselines’ original settings. We also test the
learned policy using different algorithms in environments
with well-trained adversary policies χ∗ to perturb states. The
result is shown in Table 3. Our RMARL policy achieves up
to 56.50% higher mean episode reward than the baselines

CN ET KA PD CC

MA µ -388.59 -45.79 -8.8 3.03 3.53
σ 60.72 23.5 5.07 0.67 14.72

M3 µ -390.94 -39.55 -8.54 2.12 5.19
σ 59.83 20.53 5.04 1.04 15.81

MP µ -381.70 -37.62 - - -
σ 54.06 18.94 - - -

MA µ -487.67 -55.79 -11.21 1.24 -16.88
w/ N σ 72.28 26.78 6.82 0.47 0.46
M3 µ -478.96 -54.40 -11.28 1.30 -16.75

w/ N σ 70.27 26.64 6.71 0.58 0.28
MP µ -523.83 -86.51 - - -

w/ N σ 78.45 30.86 - - -
RM µ -437.42 -52.89 -9.89 1.98 -11.82

w/ N σ 65.15 25.09 5.92 0.93 0.79

Table 2: Mean episode reward of 2000 episodes during test-
ing under random state perturbations. Our RMARL policy
achieves up to 59.68% higher mean episode rewards than
the baselines with random state perturbations.

CN ET KA PD CC
MA µ -537.56 -71.65 -14.72 -0.95 -16.64
w/χ∗ σ 72.28 42.50 5.44 1.32 0.20
M3 µ -515.85 -70.68 -13.51 -0.70 -20.60

w/χ∗ σ 74.58 41.54 5.30 0.96 0.21
MP µ -572.39 -109.26 - - -

w/χ∗ σ 79.34 47.07 - - -
RM µ -395.3 -47.53 -9.19 3.10 4.98

w/χ∗ σ 63.52 27.64 5.10 0.76 15.54

Table 3: Mean episode rewards of 2000 episodes during test-
ing under well-trained adversarial state perturbations. Our
RMARL policy achieves up to 56.50% higher mean episode
reward than the baselines with well-trained χ∗.
with well-trained adversarial state perturbations. The result
from the above two tests shows that our RMARL algorithm
achieves higher robustness in different environments with
state perturbations.

7 Conclusion
In this work, we propose a State-Adversarial Markov Game
(SAMG) and study the fundamental properties of robust
multi-agent reinforcement learning under adversarial state
perturbations. We prove that the traditional solution con-
cepts such as optimal agent policy and robust Nash equi-
librium do not always exist for an SAMG. Instead, we pro-
pose a new solution concept, robust agent policy, to maxi-
mize the worst-case expected state value and prove the exis-
tence of a robust agent policy. This is the major theoretical
contribution of our work. We also propose a Robust Multi-
Agent Reinforcement Learning (RMARL) algorithm to find
a robust policy for the MARL agents under adversarial state
perturbations. We show in numerical experiments that the
RMARL algorithm improves the robustness of the trained
policies under random state perturbations or adversarial state
perturbations. Some discussions and future work are listed in
Appendix E.



References
Behzadan, V.; and Munir, A. 2017. Vulnerability of deep reinforce-
ment learning to policy induction attacks. In MLDM, 262–275.
Springer.
Busoniu, L.; Babuska, R.; and De Schutter, B. 2008. A compre-
hensive survey of multiagent reinforcement learning. IEEE Trans.
Syst., Man, Cybern. Syst., 38(2): 156–172.
Debreu, G. 1952. A social equilibrium existence theorem. Pro-
ceedings of the National Academy of Sciences, 38(10): 886–893.
Everett, M.; Lütjens, B.; and How, J. P. 2021. Certifiable robust-
ness to adversarial state uncertainty in deep reinforcement learning.
IEEE Trans. Neural Netw. Learn. Syst.
Fan, K. 1952. Fixed-point and minimax theorems in locally convex
topological linear spaces. Proceedings of the National Academy of
Sciences of the United States of America, 38(2): 121.
Fink, A. M. 1964. Equilibrium in a stochastic n-person game. Jour-
nal of science of the hiroshima university, series ai (mathematics),
28(1): 89–93.
Foerster, J.; and Farquhar, G. 2018. Counterfactual multi-agent
policy gradients. In AAAI.
Glicksberg, I. L. 1952. A further generalization of the Kakutani
fixed point theorem, with application to Nash equilibrium points.
Proceedings of the American Mathematical Society, 3(1): 170–174.
Guo, D.; Tang, L.; Zhang, X.; and Liang, Y.-C. 2020. Joint opti-
mization of handover control and power allocation based on multi-
agent deep reinforcement learning. IEEE Trans. Veh. Technol.,
69(11): 13124–13138.
Han, S.; Wang, H.; Su, S.; Shi, Y.; and Miao, F. 2022. Stable
and Efficient Shapley Value-Based Reward Reallocation for Multi-
Agent Reinforcement Learning of Autonomous Vehicles. arXiv
preprint arXiv:2203.06333.
Hu, J.; Wellman, M. P.; et al. 1998. Multiagent reinforcement learn-
ing: theoretical framework and an algorithm. In ICML, volume 98,
242–250. Citeseer.
Hu, Y.; Shao, K.; Li, D.; Jianye, H.; Liu, W.; Yang, Y.; Wang, J.;
and Zhu, Z. 2020. Robust Multi-Agent Reinforcement Learning
Driven by Correlated Equilibrium.
Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; and Abbeel, P.
2017. Adversarial attacks on neural network policies. ICLR.
Hüttenrauch, M.; and Šošić, A. 2017. Guided deep reinforcement
learning for swarm systems. arXiv preprint arXiv:1709.06011.
Iqbal, S.; and Sha, F. 2019. Actor-attention-critic for multi-agent
reinforcement learning. In ICML, 2961–2970. PMLR.
Iyengar, G. N. 2005. Robust dynamic programming. Mathematics
of Operations Research, 30(2): 257–280.
Jiang, Y.; Zhang, T.; Ho, D.; Bai, Y.; Liu, C. K.; Levine, S.; and
Tan, J. 2021. Simgan: Hybrid simulator identification for domain
adaptation via adversarial reinforcement learning. In ICRA, 2884–
2890. IEEE.
Jin, C.; Liu, Q.; Wang, Y.; and Yu, T. 2021. V-Learning–A Sim-
ple, Efficient, Decentralized Algorithm for Multiagent RL. arXiv
preprint arXiv:2110.14555.
Jin, C.; Netrapalli, P.; and Jordan, M. 2020. What is local opti-
mality in nonconvex-nonconcave minimax optimization? In ICML,
4880–4889. PMLR.
Kardeş, E.; Ordóñez, F.; and Hall, R. W. 2011. Discounted robust
stochastic games and an application to queueing control. Opera-
tions research, 59(2): 365–382.
Kos, J.; and Song, D. 2017. Delving into adversarial attacks on
deep policies. ICLR.

Kothandaraman, D.; Chandra, R.; and Manocha, D. 2021. SS-
SFDA: Self-supervised source-free domain adaptation for road
segmentation in hazardous environments. In ICCV, 3049–3059.
Kreyszig, E. 1991. Introductory functional analysis with applica-
tions, volume 17. John Wiley & Sons.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Adversarial ex-
amples in the physical world. arXiv preprint arXiv:1607.02533.
Leibo, J. Z.; and Zambaldi, V. 2017. Multi-agent Reinforcement
Learning in Sequential Social Dilemmas. In AAMAS, 464–473.
Lerer, A.; Hu, H.; Foerster, J.; and Brown, N. 2020. Improving
policies via search in cooperative partially observable games. In
Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 34, 7187–7194.
Li, S.; Wu, Y.; Cui, X.; Dong, H.; Fang, F.; and Russell, S. 2019.
Robust multi-agent reinforcement learning via minimax deep de-
terministic policy gradient. In AAAI, volume 33, 4213–4220.
Lin, J.; Dzeparoska, K.; Zhang, S. Q.; Leon-Garcia, A.; and Paper-
not, N. 2020. On the robustness of cooperative multi-agent rein-
forcement learning. In 2020 IEEE Security and Privacy Workshops
(SPW), 62–68. IEEE.
Lin, T.; Jin, C.; and Jordan, M. 2020. On gradient descent ascent
for nonconvex-concave minimax problems. In International Con-
ference on Machine Learning, 6083–6093. PMLR.
Lin, Y.-C.; Hong, Z.-W.; Liao, Y.-H.; Shih, M.-L.; Liu, M.-Y.; and
Sun, M. 2017. Tactics of adversarial attack on deep reinforcement
learning agents. IJCAI.
Liu, Z.; Cai, Y.; Wang, H.; Chen, L.; Gao, H.; Jia, Y.; and Li, Y.
2021. Robust target recognition and tracking of self-driving cars
with radar and camera information fusion under severe weather
conditions. IEEE Trans. Intell. Transp. Syst.

Lowe, R.; Wu, Y. I.; Tamar, A.; Harb, J.; Abbeel, O. P.; and Mor-
datch, I. 2017. Multi-agent actor-critic for mixed cooperative-
competitive environments. In NeurIPS, 6379–6390.
Mandlekar, A.; Zhu, Y.; Garg, A.; Fei-Fei, L.; and Savarese, S.
2017. Adversarially robust policy learning: Active construction of
physically-plausible perturbations. In IROS, 3932–3939. IEEE.
Mnih, V.; Kavukcuoglu, K.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540): 529–533.
Morimoto, J.; and Doya, K. 2005. Robust reinforcement learning.
Neural computation, 17(2): 335–359.
Muniraj, D.; Vamvoudakis, K. G.; and Farhood, M. 2018. Enforc-
ing signal temporal logic specifications in multi-agent adversarial
environments: A deep q-learning approach. In 2018 IEEE Confer-
ence on Decision and Control (CDC), 4141–4146. IEEE.
Nash, J. 1951. Non-cooperative games. Annals of mathematics,
286–295.
Nilim, A.; and El Ghaoui, L. 2005. Robust control of Markov deci-
sion processes with uncertain transition matrices. Operations Re-
search, 53(5): 780–798.
Oliehoek, F. A.; Amato, C.; et al. 2016. A concise introduction to
decentralized POMDPs, volume 1. Springer.
Pattanaik, A.; and Tang, Z. 2017. Robust deep reinforcement learn-
ing with adversarial attacks. AAMAS.
Pattanaik, A.; Tang, Z.; Liu, S.; Bommannan, G.; and Chowdhary,
G. 2018. Robust Deep Reinforcement Learning with Adversarial
Attacks. In AAMAS, 2040–2042.
Pinto, L.; Davidson, J.; and Sukthankar, R. 2017. Robust adversar-
ial reinforcement learning. In ICML, 2817–2826. PMLR.



Pretorius, A.; Cameron, S.; et al. 2020. A game-theoretic analysis
of networked system control for common-pool resource manage-
ment using multi-agent reinforcement learning. In NeurIPS, vol-
ume 33, 9983–9994.

Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

Qu, G.; Lin, Y.; Wierman, A.; and Li, N. 2020. Scalable Multi-
Agent Reinforcement Learning for Networked Systems with Aver-
age Reward. In NeurIPS, volume 33, 2074–2086.

Rashid, T.; Farquhar, G.; Peng, B.; and Whiteson, S. 2020.
Weighted QMIX: Expanding Monotonic Value Function Factorisa-
tion for Deep Multi-Agent Reinforcement Learning. In NeurIPS.

Razaviyayn, M.; Huang, T.; Lu, S.; Nouiehed, M.; Sanjabi, M.; and
Hong, M. 2020. Nonconvex min-max optimization: Applications,
challenges, and recent theoretical advances. IEEE Signal Process.
Mag., 37(5): 55–66.

Rudin, W.; et al. 1976. Principles of mathematical analysis, vol-
ume 3. McGraw-hill New York.

Sallab, A. E.; Abdou, M.; Perot, E.; and Yogamani, S. 2017. Deep
reinforcement learning framework for autonomous driving. Elec-
tronic Imaging, 2017(19): 70–76.

Shapley, L. S. 1953. Stochastic games. Proceedings of the national
academy of sciences, 39(10): 1095–1100.

Shen, M.; and How, J. P. 2021. Robust Opponent Modeling via Ad-
versarial Ensemble Reinforcement Learning. In ICAPS, volume 31,
578–587.

Sinha, A.; O’Kelly, M.; et al. 2020. Formulazero: Distributionally
robust online adaptation via offline population synthesis. In ICML,
8992–9004. PMLR.

Su, J.; Adams, S.; and Beling, P. 2021. Value-decomposition multi-
agent actor-critics. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, 11352–11360.

Sukhbaatar, S.; Szlam, A.; and Fergus, R. 2016. Learning Multia-
gent Communication with Backpropagation. In NeurIPS.

Sun, C.; Kim, D.-K.; and How, J. P. 2021. ROMAX: Certifiably
Robust Deep Multiagent Reinforcement Learning via Convex Re-
laxation. arXiv preprint arXiv:2109.06795.

Sunehag, P.; Lever, G.; et al. 2018. Value-Decomposition Networks
For Cooperative Multi-Agent Learning Based On Team Reward. In
AAMAS, 2085–2087.

Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge.

van der Heiden, T.; Salge, C.; Gavves, E.; and van Hoof, H. 2020.
Robust Multi-Agent Reinforcement Learning with Social Empow-
erment for Coordination and Communication. arXiv preprint
arXiv:2012.08255.

Xiao, C.; Pan, X.; et al. 2019. Characterizing attacks on deep rein-
forcement learning. arXiv preprint arXiv:1907.09470.

Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; and Wu, Y.
2021a. The Surprising Effectiveness of PPO in Cooperative, Multi-
Agent Games. arXiv preprint arXiv:2103.01955.

Yu, J.; Gehring, C.; Schäfer, F.; and Anandkumar, A. 2021b. Ro-
bust Reinforcement Learning: A Constrained Game-theoretic Ap-
proach. In Learning for Dynamics and Control, 1242–1254.
PMLR.

Zhang, H.; Chen, H.; Boning, D.; and Hsieh, C.-J. 2021. Robust
reinforcement learning on state observations with learned optimal
adversary. arXiv preprint arXiv:2101.08452.

Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Liu, M.; Boning, D.; and
Hsieh, C.-J. 2020a. Robust deep reinforcement learning against ad-
versarial perturbations on state observations. NeurIPS, 33: 21024–
21037.
Zhang, K.; Sun, T.; Tao, Y.; Genc, S.; Mallya, S.; and Basar, T.
2020b. Robust Multi-Agent Reinforcement Learning with Model
Uncertainty. In NeurIPS.
Zhou, M.; Liu, Z.; Sui, P.; Li, Y.; and Chung, Y. Y. 2020. Learn-
ing Implicit Credit Assignment for Cooperative Multi-Agent Rein-
forcement Learning. In NeurIPS, volume 33, 11853–11864.



Appendix for “Robust Multi-Agent
Reinforcement Learning Under

Adversarial State Perturbations”
Numbering For the propositions and theorems that ap-
peared in the main manuscript, we keep the same numbering
in the Appendix.

A Comparison with Dec-POMDP and
Markov Games

A.1 Comparison with Dec-POMDP
Our SAMG problem cannot be solved by the existing work
in the Decentralized Partially Observable Markov Deci-
sion Process (Dec-POMDP) (Lerer et al. 2020). In contrast,
the policy in our problem needs to be robust under a set
of admissible perturbed states. The adversary aims to find
the worst-case state perturbation policy χ to minimize the
MARL agents’ total expected return. In the following propo-
sition, we show that under certain additional conditions our
proposed SAMG problem becomes a Dec-POMDP prob-
lem.
Proposition 3. When the adversary policy χ is a fixed de-
terministic function, the SAMG problem becomes a Dec-
POMDP (Lerer et al. 2020).

Proof. When the adversary policy χ is a fixed determin-
istic function, an SAMG (N ,S,A, r,Ps, p, γ) becomes a
Dec-POMDP (N ,S,A, r, O, p, γ). The agent set N =
{1, ..., n}. The global joint state is s ∈ S . Each agent i is
associated with an action ai ∈ Ai. The global joint action
is a = (a1, ..., an) ∈ A, A := A1 × · · · × An. All agents
share a stage-wise reward function r : S × A → R. The
state transition function is p : S ×A → ∆(S), where ∆(S)
is a probability simplex denoting the set of all possible prob-
ability measures on S. The state transits from the true state
to the next state. The discount factor is γ. When the adver-
sary policy χ is a fixed deterministic function, the adversary
policy follows χi(ρi|s) = 1 selecting the perturbed state ρi
for the true state s with probability 1. Let us use the nota-
tion χi(s) = ρi for this case. The observational function
oi(s) = χi(s) = ρi, where oi is the observation of agent i
given the state s.

Different from Dec-POMDP, the adversary policy χ is se-
lected to minimize the agents’ total expected return in our
problem. Note that agents cannot get the true state s in Dec-
POMDP, but in our problem, the true state s is known by the
adversaries. Adversaries can take the true state information
and use it to select the perturbed states.

A.2 Comparison with Markov Games
Under a special condition, when the adversary policy χ is a
bijective mapping from S to S , the SAMG problem becomes
a Markov game as shown in the following proposition. This
proposition shows the connection between a SAMG and a
Markov game with a special type of state perturbation.

When χ is a bijective mapping from S to S, the adversary
policy follows χ(ρ|s) = 1 selecting the perturbed state ρ for

the true state s with probability 1. Let us use the notation
χ(s) = ρ for this special case.

Proposition 4. Specially, when the adversary policy χ is a
bijective mapping from S to S, the SAMG problem becomes
a Markov game.

Proof. When the adversary policy χ is a bijective mapping
from S to S, an SAMG problem (N ,S,A, r,Ps, p, γ) be-
comes a Markov game (Nnew,Snew,Anew, rinew, pnew, γ)
that is constructed as follows:

Taking snew = ρ = χ(s) as the new state, the new global
joint state set is Snew := S. The global joint action set
Anew = A = A1 × · · · × An and the agent set Nnew = N
stay the same.

We can construct a new reward function rinew : Snew ×
Anew → R for each agent i as

rinew(snew = χ(s), anew = a) = r(s, a), (8)

and a new state transition function pnew : Snew ×Anew →
∆(Snew) defined as

pnew(ρ′ = χ(s′)|ρ = χ(s), a) = p(s′|s, a). (9)

Each agent uses a policy πinew : Snew → ∆(Ai) to choose
an action based on the new state. Hence, the SAMG problem
becomes a Markov game.

When the adversary policy χ is a bijective mapping from
S to S, the new global joint state set Snew is a perturbation
of S and each state gets a new ”label” given by the adversary.
In this case, the SAMG is reduced to a Markov game.

B Two-Agent Two-State Game
In this section, we analyze a small-scale game example with
two agents N = {1, 2} and two states S = {s1, s2} as
shown in Fig. 5. Each agent has two actions A1 = A2 =
{a1, a2}. The transition probabilities are defined below.

p(s′ = s1|s = s1, a
1 6= a2) = 1,

p(s′ = s2|s = s1, a
1 = a2) = 1,

p(s′ = s2|s = s2, a
1 6= a2) = 1,

p(s′ = s1|s = s2, a
1 = a2) = 1. (10)

Specifically, a1 = a2 includes two cases: a1 = a2 = a1
or a1 = a2 = a2. Similarly, a1 6= a2 includes two cases:
a1 = a1, a

2 = a2 or a1 = a2, a
2 = a1.

𝑠! 𝑠"

𝑎! = 𝑎"
𝑟 = 1

𝑎! = 𝑎"
𝑟 = 0

𝑎! ≠ 𝑎"
𝑟 = 1

𝑎! ≠ 𝑎"
𝑟 = 0

Figure 5: A two-agent two-state game example. Agents get
reward 1 at state s1 if they choose the same action. Agents
get reward 1 at state s2 if they choose different actions.



Two agents share the same reward function:

r(s, a1, a2) =


1, a1 = a2, and s = s1,

0, a1 6= a2, and s = s1,

0, a1 = a2, and s = s2,

1, a1 6= a2, and s = s2.

(11)

For the power of the adversary, we allow the adversary to
perturb any state to the other state:

P1
s = P2

s = {s1, s2}. (12)

We use γ = 0.99 as the discount factor.

B.1 Optimal Agent Policy Without Adversaries
When there is no adversary, the optimal policy for agents
is to choose the same action in s1 and choose different ac-
tions in s2. One example is π1(a1|s1) = π1(a1|s2) =
π2(a1|s1) = π2(a2|s2) = 1. The agents keep receiving
rewards. The values for each state are Ṽ (s1) = Ṽ (s2) =
1

1−γ = 100. Because agents share the same reward function,
they also share the same values for each state. However, this
policy receives V (s1) = V (s2) = 0 when agents are fac-
ing adversaries χi(s1|s2) = χi(s2|s1) = 1 for i = 1, 2 and
always taking the wrong actions with 0 reward.

B.2 A Stochastic Policy With Adversaries
We consider a stochastic policy π1(a1|s1) = π1(a1|s2) =
π2(a1|s1) = π2(a2|s2) = 0.5. Under this policy, the prob-
abilities of taking the same or different actions are the same
for each state Pr(a1 = a2 | s1) = Pr(a1 6= a2 | s1) =
Pr(a1 = a2 | s2) = Pr(a1 6= a2 | s2) = 0.5. Agents
randomly stay or transit in each state and receive a posi-
tive reward with a 50% probability. The adversary has no
power under this policy because π is the same for both states.
The values for each state are V (s1) = V (s2) = Ṽ (s1) =

Ṽ (s2) = 0.5
1−γ = 50.

B.3 Deterministic Policies With Adversaries
Since each agent has two actions for each state, there are in
total 24 = 16 possible deterministic policies for the two-
agent two-state game example. All possible deterministic
policies can be classified into three cases: (1) If agents select
the same action in one state si and select different actions in
the other state sj , then we always have V (s1) = V (s2) = 0.
This is because adversaries can always use χk(s1|sj) =
χk(s2|si) = 1 for k = 1, 2 such that agents always receive
a 0 reward. (2) If agents always select different actions in
both states, then V (s1) = 0, V (s2) = 100. This is because
agents never transit to the other state and keep receiving the
same reward. (3) If agents always select the same action in
both states, then V (s1) = 1

1−γ2 ≈ 50.25, V (s2) = γ
1−γ2 ≈

49.75. This is because agents circulate through both states
and adversaries have no power to change it.

B.4 Optimal Adversary Policy
In this section, we study the optimal adversary and the
optimal agent policy in a State-Adversarial Markov Game

(SAMG). We use the notation χ∗(π) to denote the optimal
adversary policy for the agent policy π. In the following
proposition, we show the existence of the optimal adversary
in an SAMG.
Proposition 1 (Existence of Optimal Adversary Policy).
Given an SAMG G = (N ,S,A, r,Ps, p, γ), for any fixed
agent policy π, there exists an optimal adversary policy χ∗
such that Vπ,χ∗(π)(s) ≤ Vπ,χ(s) for any s ∈ S and any χ.

Proof. We prove this by constructing an MDP M =

(S, Â, r̂, p̂, γ) such that the optimal policy of M is the op-
timal adversary policy χ∗ for the SAMG given the fixed π.
In the MDP M , we take all adversaries as a joint adversary
agent. The joint adversary learns a policy χ to find a joint
perturbed state given the current true state. The action space
Â = S×S×· · ·×S. Note that the joint admissible perturbed
state set in Definition 1 Ps ⊆ Â.

The reward function r̂ is defined as:

r̂(s, â) = −
∑
a∈A

π(a|â)r(s, a) for â ∈ Ps. (13)

The transition probability p̂ is defined as

p̂(s′|s, â) =
∑
a∈A

π(a|â)p(s′|s, a) for â ∈ Ps. (14)

The reward function is defined based on the intuition that
when the agent receives r given s, a, the reward of the ad-
versary is the negative of the agent reward, that is to say, r̂ =

−r. Considering that r(s, a) = E[R|s, a] = −E[R̂|s, a],

r̂(s, â) = E[R̂|s, â]

=
∑
R̂

R̂
∑
a∈A

Pr[R̂|s, a]π(a|â)

=
∑
a∈A

∑
R̂

R̂Pr[R̂|s, a]

π(a|â)

=
∑
a∈A

E[R̂|s, a]π(a|â)

= −
∑
a∈A

E[R|s, a]π(a|â)

= −
∑
a∈A

r(s, a)π(a|â). (15)

Based on the properties of MDP (Sutton, Barto et al.
1998; Puterman 2014), we know that the MDP M has an
optimal policy χ∗ that satisfies V̂π,χ∗(s) ≥ V̂π,χ(s) for all s
and all χ, where V̂π,χ is the state value function of the MDP
M .

The Bellman equation for the MDP M is

V̂π,χ(s) =
∑
â∈Ps

χ(â|s)

(
r̂ + γ

∑
s′∈S

p̂(s′|s, â)V̂π,χ(s′)

)

=
∑
â∈Ps

χ(â|s)
∑
a∈A

π(a|â)

(
−r + γ

∑
s′∈S

p(s′|s, a)V̂π,χ(s′)

)
.

(16)



By multiplying −1 on both sides, we have

(−V̂π,χ(s)) =
∑
â∈Ps

χ(â|s)
∑
a∈A

π(a|â)[
r + γ

∑
s′∈S

p(s′|s, a)(−V̂π,χ(s′))

]
. (17)

On the other side, for the SAMG, we have the Bellman equa-
tion for any fixed policies π and χ as

Vπ,χ(s) =
∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r + γ

∑
s′∈S

p(s′|s, a)Vπ,χ(s′)

)
. (18)

When π and χ are fixed, they can be taken together as a
single policy, and the existing results from Dec-POMDP can
be directly applied. Comparing Eq. (18) and (17), we know
that Vπ,χ(s) = (−V̂π,χ(s)).

The optimal adversary policy χ∗ for the MDP M satisfies
V̂π,χ∗(s)) ≥ V̂π,χ(s)) for any s and any χ. Therefore, χ∗
also satisfies Vπ,χ∗(s) ≤ Vπ,χ(s) for any s and any χ, and
the optimal policy of the MDP M is the optimal adversary
policy χ∗ for the SAMG given the fixed π.

B.5 Optimal Agent Policy With Adversaries
Now we know the existence of the optimal adversary in an
SAMG. Then we consider what is an optimal agent policy
under the optimal adversary. We first show that the deter-
ministic agent policy is not always better than a stochastic
policy in an SAMG in the following proposition.

Proposition 5. There exists an SAMG and some stochastic
policy π such that we cannot find a better deterministic pol-
icy π′ satisfying Vπ′,χ∗(π′)(s) ≥ Vπ,χ∗(π)(s) for all s ∈ S.

Proof. We prove this theorem by giving a counter-example
where no deterministic policy is better than a stochastic pol-
icy. As shown in the two-agent two-state game example in
Fig. 5, all 16 deterministic policies are no better than the
stochastic policy π1(a1|s1) = π1(a1|s2) = π2(a1|s1) =
π2(a2|s2) = 0.5.

Finally, we show the optimal agent policy π∗ does not
always exist such that Vπ∗,χ∗(π∗)(s) ≥ Vπ,χ∗(π)(s) for any
π and all s ∈ S under the optimal adversary policy χ∗ in an
SAMG in the following theorem.

Theorem 1 (Non-existence of Optimal Agent Policy).
Under the optimal adversary policy χ∗, an optimal agent
policy π∗ does not always exist for an SAMG such that
Vπ∗,χ∗(π∗)(s) ≥ Vπ,χ∗(π)(s) for any π and any s ∈ S.

Proof. We prove this theorem by showing that the two-
agent two-state game in Fig. 5 does not have an optimal
policy. We first show that the policy π1 : π1(a1|s1) =

π1(a1|s2) = π2(a2|s1) = π2(a2|s2) = 1 is not an opti-
mal policy. Because agents always select different actions
in both states, agents always stay in the same state and
adversaries have no power to change it. The values for
each state are Vπ1,χ∗(π1)(s1) = 0, Vπ1,χ∗(π1)(s2) = 100.
Now we consider the stochastic policy π2 : π1(a1|s1) =
π1(a1|s2) = π2(a1|s1) = π2(a2|s2) = 0.5. The values for
each state are Vπ2,χ∗(π2)(s1) = Vπ2,χ∗(π2)(s2) = 50. Be-
cause Vπ2,χ∗(π2)(s1) > Vπ1,χ∗(π1)(s1), the policy π1 is not
the optimal policy for agents.

If there exists an optimal policy π∗, then it must be bet-
ter than π1 and have Vπ∗,χ∗(π∗)(s1) > 0, Vπ∗,χ∗(π∗)(s2) =
100. In order to have Vπ∗,χ∗(π∗)(s2) = 100, agents must se-
lect different actions in s2 and keep receiving the positive re-
wards from each step. In order to have Vπ∗,χ∗(π∗)(s1) > 0,
agents must have a chance to select the same action in s1,
i.e., Pr(a1 = a2 | s1) > 0. However, if Pr(a1 = a2 | s1) >
0, then adversaries can have χi(s1|s2) > 0 for i = 1, 2 to
perturb the state s2 to s1 and reduce Vπ∗,χ∗(π∗)(s2). There-
fore, no policy can do better than π1 and since π1 is not the
optimal policy, there is no optimal policy for agents.

In the comparison of π1 and π2 in the above proof, we see
that it is not always possible to maximize the state value of
all the states. Sometimes, we have to make trade-offs among
different states. We cannot tell which policy is better be-
tween π1 and π2 according to the traditional definition of an
optimal policy. However, if we use the worst-case expected
state value concept in the Definition 4 and assume that the
initial state is always s2, then we can say π1 is the optimal
agent policy that gives the maximum worst-case expected
state value 100 in this case.

C Stage-wise Equilibrium, Robust Nash
Equilibrium, and Robust Agent Policy

As proved in Theorem 1, the optimal agent policy does not
always exist for an SAMG. In this section, we discuss other
solution concepts for the agent policy in an SAMG. We first
show the existence of a unique robust state value function
for each agent in C.1. Based on this property, we show the
existence of a stage-wise equilibrium for each state in C.2.
Though the stage-wise equilibrium exists for each state, the
robust Nash equilibrium does not always exist as shown
in C.3. Instead, we propose a new solution concept, the ro-
bust agent policy, and show its existence in C.4.

We first give a review of the Nash equilibrium used in
the literature. Nash equilibrium is a solution concept pro-
posed by Nash in (Nash 1951) for general-sum finite one-
shot games. In Nash equilibrium, each player selects the best
response strategy to the others’ strategies. No player would
like to deviate from the Nash equilibrium otherwise its util-
ity may become worse. This concept is extended to infinite
games by Debreu (Debreu 1952), Glicksberg (Glicksberg
1952), and Fan (Fan 1952). Markov game is first defined by
Shapley in (Shapley 1953) in a two-player zero-sum setting
with a sequential decision process. Fink extends the Nash
equilibrium concept to Markov games in (Fink 1964) and
proves that an equilibrium point exists in n-player general-



sum discounted Markov games. The uncertainty in transi-
tion dynamics of a Markov game is considered in (Nilim
and El Ghaoui 2005; Iyengar 2005) using a robust optimiza-
tion approach with independent proofs for the existence of
the equilibrium point. Besides uncertainty in transition dy-
namics, uncertainty in utility (it is called ”reward” in rein-
forcement learning) is also considered in (Kardeş, Ordóñez,
and Hall 2011) for n-player finite state/action discounted
Markov games with the proof for the existence of the equi-
librium point.

However, the uncertainty in the state has not been stud-
ied yet for Markov games. To the best of our knowledge,
we are the first to formulate the problem for n-player finite
state/action discounted Markov games with state uncertainty
and show the existence of the stage-wise equilibrium and the
non-existence of the robust Nash equilibrium.

We use the following Assumption 1 throughout this sec-
tion.
Assumption 1. The global state set S and the global action
set A are finite sets.

C.1 Unique Robust State Value Function
Denote the agent policies and adversary policies of all other
agents and adversaries except agent i and adversary i as π−i
and χ−i respectively. We show that there exists a unique ro-
bust state value function V i∗,π−i,∗,χ−i for agent i given any
π−i and χ−i.
Definition 6 (Robust state value function). A state value
function V i∗,π−i,∗,χ−i : S → R for agent i given π−i and
χ−i is called a robust state value function if for all s ∈ S,

V i∗,π−i,∗,χ−i(s) = max
πi

min
χi

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V i∗,π−i,∗,χ−i(s′)

)
. (19)

Note that we use π(a|ρ) = Πn
i=1π

i(ai|ρi) to denote the
joint agent policy. We use χ(ρ|s) = Πn

i=1χ
i(ρi|s) to denote

the joint adversary policy.
Before proving the existence of the unique robust state

value function, we first introduce some notations for this
proof. For a given state value function V i∗,π−i,∗,χ−i : S → R
defined on a finite state set S, we can construct a state value
vector vi = vec(V i∗,π−i,∗,χ−i) = [V i∗,π−i,∗,χ−i(s)]s∈S ∈
V := R|S| by traversing all states, where vec(·) is a vec-
torization function. The infinity norm on V is ‖vi‖∞ =
maxs∈S |V i(s)|. Define the total expected return in state s
for πi and χi as

f is(v
i, πi, π−i, χi, χ−i) =

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)[vec−1(vi)](s′)

)
, (20)

where π−i and χ−i denotes the agent policies and the adver-
sary policies of all other agents except agent i.

Define the robust state value in state s given π−i and χ−i
as a function ψis : V → R,

ψis(v
i, π−i, χ−i) = max

πi
min
χi

f is(v
i, πi, π−i, χi, χ−i).

(21)

Note that ψis gives a real number that denotes the total ex-
pected return in state s given π−i and χ−i. We can construct
a mapping Ψi

π,χ : V → V from any state value vector vi to
a robust state value vector [Ψi

π,χ(vi)]s∈S by traversing all s,
that is to say, [Ψi

π,χ(vi)]s∈S = ψis(v
i, π−i, χ−i).

Lemma 4. For any i ∈ N , the function Ψi
π,χ : V → V is a

contraction mapping given any π−i and χ−i of other agents
and adversaries except agent i and adversary i.

Proof. Let us consider two vectors vi, zi ∈ V . For any i ∈
N , given any π−i and χ−i, for all s ∈ S, we have

ψis(v
i, π−i, χ−i) = max

πi
min
χi

f is(v
i, πi, π−i, χi, χ−i)

= f is(v
i, πi∗, π−i, χi∗, χ−i), (22)

where πi∗ is the corresponding maximizer, and χi∗ is the
corresponding optimizer for πi∗. Similarly, with the opti-
mizers ωi∗ and ϕi∗1 for the following maximin optimization
problem, we have

ψis(z
i, π−i, χ−i) = max

ωi
min
ϕi

f is(z
i, ωi, π−i, ϕi, χ−i)

= f is(z
i, ωi∗, π−i, ϕi∗1 , χ

−i)

≥ f is(zi, πi∗, π−i, ϕi∗2 , χ−i), (23)

where

ϕi∗2 = arg min
ϕi

f is(z
i, πi∗, π−i, ϕi, χ−i). (24)

Then, for any i ∈ N , given any π−i and χ−i, for all s ∈ S ,
it holds that

ψis(v
i, π−i, χ−i)− ψis(zi, π−i, χ−i)

= f is(v
i, πi∗, π−i, χi∗, χ−i)− f is(zi, ωi∗, π−i, ϕi∗1 , χ−i)

≤ f is(vi, πi∗, π−i, χi∗, χ−i)− f is(zi, πi∗, π−i, ϕi∗2 , χ−i)
≤ f is(vi, πi∗, π−i, ϕi∗2 , χ−i)− f is(zi, πi∗, π−i, ϕi∗2 , χ−i)

=
∑
ρ∈Ps

ϕi∗2 (ρi|s)
∏
j 6=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×

∏
k 6=i

πk(ak|ρk)

(
r + γ

∑
s′∈S

p(s′|s, a)[vec−1(vi)](s′)

)
−
∑
ρ∈Ps

ϕi∗2 (ρi|s)
∏
j 6=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×

∏
k 6=i

πk(ak|ρk)

(
r + γ

∑
s′∈S

p(s′|s, a)[vec−1(zi)](s′)

)
=
∑
ρ∈Ps

ϕi∗2 (ρi|s)
∏
j 6=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×



∏
k 6=i

πk(ak|ρk)γ
∑
s′∈S

p(s′|s, a)×

{
[vec−1(vi)](s′)− [vec−1(zi)](s′)

}
≤
∑
ρ∈Ps

ϕi∗2 (ρi|s)
∏
j 6=i

χj(ρj |s)
∑
a∈A

πi∗(ai|ρi)×

∏
k 6=i

πk(ak|ρk)γ
∑
s′∈S

p(s′|s, a)‖vi − zi‖∞

= γ‖vi − zi‖∞. (25)
The second inequality in Eq. (25) follows

χi∗ = arg min
χi

f is(v
i, πi∗, π−i, χi, χ−i). (26)

Because for any i ∈ N , given any π−i and χ−i, for all
s ∈ S
ψis(v

i, π−i, χ−i)−ψis(zi, π−i, χ−i) ≤ γ‖vi−zi‖∞, (27)
Based on symmetry, we have
ψis(z

i, π−i, χ−i)− ψis(vi, π−i, χ−i) ≤ γ‖zi − vi‖∞
= γ‖vi − zi‖∞.

(28)

Thus, it holds that for any i ∈ N , given any π−i and χ−i

‖Ψi
π,χ(vi)−Ψi

π,χ(zi)‖∞ ≤ γ‖vi − zi‖∞, (29)

that is to say, the function Ψi
π,χ is a contraction mapping.

Theorem 5 (Existence of Unique State Value Function).
For an SAMG with finite state and finite action spaces, for
any i ∈ N , given any π−i and χ−i of other agents and
adversaries except agent i and adversary i, there exists a
unique robust state value function V i∗,π−i,∗,χ−i : S → R for
agent i such that for all s ∈ S,

V i∗,π−i,∗,χ−i(s) = max
πi

min
χi

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)V i∗,π−i,∗,χ−i(s′)

)
. (30)

Proof. For any i ∈ N , there exists a state value func-
tion V i∗,π−i,∗,χ−i satisfying (30) if and only if vi =

vec(V i∗,π−i,∗,χ−i) is a fixed point of Ψi
π,χ : V → V , where

[Ψi
π,χ(vi)]s∈S = ψis(v

i, π−i, χ−i) and ψis(v
i, π−i, χ−i) is

defined in (21). We use Banach’s fixed point theorem to
prove this as follows.

Because any finite-dimensional normed vector space is
complete (Kreyszig 1991), the (V, ‖ · ‖∞) is a complete Ba-
nach space. Also, for any i ∈ N , given any π−i and χ−i,
the function Ψi

π,χ is a contraction mapping according to
Lemma 4. Therefore, by Banach’s fixed point theorem, there
is a unique fixed point vi such that Ψi

π,χ(vi) = vi. In other
words, for any i ∈ N , given any π−i and χ−i, there exists a
unique V i∗,π−i,∗,χ−i such that

V i∗,π−i,∗,χ−i(s) = max
πi

min
χi

f is(v
i, πi, π−i, χi, χ−i). (31)

Denote the state value function for agent i given any π−i
and χ−i of other agents and adversaries except agent i and
adversary i as

V iπi,π−i,χi,χ−i(s) = f is(v
i, πi, π−i, χi, χ−i), (32)

where vi = vec(V i∗,π−i,∗,χ−i). Then we have the following
corollary for Theorem 5.
Corollary 5.1. For an SAMG with finite state and finite ac-
tion spaces, let V i∗,π−i,∗,χ−i be the unique robust state value
function for agent i given any π−i and χ−i such that for all
s ∈ S,

V i∗,π−i,∗,χ−i(s) = max
πi

min
χi

f is(v
i, πi, π−i, χi, χ−i)

= f is(v
i, πi∗, π−i, χi∗, χ−i), (33)

where vi = vec(V i∗,π−i,∗,χ−i), πi∗ is the corresponding
maximizer at state s, and χi∗ is the corresponding op-
timizer for πi∗ at state s, then for state s it holds that
V iπi∗,π−i,χi∗,χ−i(s) ≥ V iπi,π−i,χi∗,χ−i(s) for any πi, and
V iπi∗,π−i,χi∗,χ−i(s) ≤ V iπi∗,π−i,χi,χ−i(s) for any χi.

C.2 Existence of the Stage-wise Equilibrium
Before we show the existence of the robust Nash equilib-
rium, we first show a concept of the stage-wise equilibrium.
Definition 7 (Stage-wise Equilibrium). For an SAMG, the
policy (π∗, χ∗) is a stage-wise equilibrium for state s if for
all i ∈ N and all πi and χi, it holds that

V iπi,π−i∗,χi∗,χ−i∗(s) ≤ V iπi∗,π−i∗,χi∗,χ−i∗(s)

≤ V iπi∗,π−i∗,χi,χ−i∗(s), (34)

where π−i and χ−i denotes the agent policies and adversary
policies of all the other agents except agent i, respectively.

Originally, the Nash equilibrium concept is proposed by
Nash for the finite one-shot game, where the state transi-
tion of the environment is not considered. When the Nash
equilibrium concept is extended for Markov games, the ex-
istence of the Nash equilibrium is shown by the existence
of the state-wise equilibrium for each state. If a policy is
a stage-wise equilibrium for all states, then this policy is a
Nash equilibrium for the Markov game.

We show the existence of the stage-wise equilibrium de-
fined in Definition 7 in the following theorem.
Theorem 6 (Existence of Stage-wise equilibrium). For an
SAMG with finite state and finite action spaces, the stage-
wise equilibrium defined in Definition 7 exists for any s ∈ S.

Proof. Let us construct a 2n player game for any s ∈ S.
We have n agents and n adversaries in the player set. We
introduce uniform notations for the agents and adversaries
to describe a 2n player game at state s. The player set
I = {1, ..., n, n + 1, ..., 2n}. The first half of the player
set {1, ..., n} represents agents, while the second half {n +
1, ..., 2n} represents adversaries. The set of available actions
for player i is

Ais =


Ai ×Ai · · · × Ai︸ ︷︷ ︸

total number: |Pi
s|

, i = 1, ..., n;

Pi−ns , i = n+ 1, ..., 2n.

(35)



Each adversary’s action set includes all possible perturbed
states in the admissible perturbed state set at state s. Each
agent’s action set includes all possible joint actions given
every possible perturbed state. Take the two-agent two-state
game in Fig. 5 as an example, the player set I = {1, 2, 3, 4}.
Player 3 is the adversary for agent player 1. Player 4 is the
adversary for agent player 2. If the current true state is s1,
then A1

s1 = A2
s1 = {(a1, a1), (a1, a2), (a2, a2), (a2, a1)}

are the action sets for two agent players. In A1
s1 for agent 1,

the joint action (a1, a2) means selecting a1 if the perturbed
state for agent 1 is s1 and selecting a2 if the perturbed state
for agent 1 is s2. For two adversary players, A3

s1 = A4
s1 =

{s1, s2}, as adversaries can perturb the true state s1 to s2.
We consider the mixed strategy σis ∈ ∆(Ais) for player

i. Note that the mixed strategy for each adversary gives us
the probability distribution of all possible perturbed states
for state s, i.e. χi−n(ρi−n|s) = σis(ρ

i−n) for i = n +
1, ..., 2n. Then we show how we can get each agent’s pol-
icy πi(ai|ρi) based on its mixed strategy σis by calculating
the marginal probabilities. Denote the total number of pos-
sible perturbed state for agent i at state s as P such that
P = |Pis|. Here we drop the subscript s in Ps for a concise
representation. The perturbed state set for agent i is repre-
sented as {ρi1, ρi2, . . . , ρiP }. Denote the joint action of agent
i as bi = (bi1, b

i
2, . . . , b

i
P ) where bik is the action selected

for the perturbed state ρik ∈ Pis. Then the mixed strategy
σis(b

i
1, b

i
2, ..., b

i
P ) gives us the joint probability of selecting

bik for ρik for all k = 1, 2, ..., P . We can get the marginal
probability of selecting action ai given the perturbed state
ρik ∈ Pis as

πi(ai|ρik) =
∑

{bi∈Ai
s|bik=ai}

σis(b
i
1, b

i
2, ..., b

i
P ). (36)

The marginal probability of selecting action ai given the per-
turbed state ρik is calculated by summing up the joint proba-
bility over all joint actions in which agent i selects ai given
the perturbed state ρik. Take the two-agent two-state game in
Fig. 5 as an example, if the current perturbed state for agent
1 is ρ1 = s1, then agent 1’s policy is

π1(a1|ρ1 = s1) = σ1(a1, a1) + σ1(a1, a2)

π1(a2|ρ1 = s1) = σ1(a2, a1) + σ1(a2, a2). (37)

Note that the mixed strategy σis ∈ ∆(Ais) only gives part
of the agent and adversary policies. For example, the mixed
strategy for the adversaries only gives a distribution of the
perturbed states for st = s. We construct the complete agent
and adversary policies as follows: For i = 1, ..., n, the agent
i’s policy is

πi(ai|ρi) =


∑
{bi∈Ai

s|bik=ai}
σis(b

i
1, b

i
2, ..., b

i
P ),

for ρi = ρik ∈ Pis;
U(Ai),
for ρi /∈ Pis,

(38)

where U(Ai) represents a uniform distribution on Ai. For
i = 1, ..., n, the adversary i’s policy is

χi(ρi|st) =

{
σi+ns (ρi), for st = s;

U(Pis), for st 6= s,
(39)

where U(Pis) represents a uniform distribution on Pis.
The utility function for player i is

uis(σ
i
s, σ
−i
s ) =



f is(v
i∗, πi, π−i, χi, χ−i),

for i = 1, ..., n;

−f i−ns (v(i−n)∗, πi−n, π−(i−n),

χi−n, χ−(i−n)),

for i = n+ 1, ..., 2n.

(40)

where σ−is denotes the strategies of all other players except
player i, vi∗ = vec(V i∗,π−i,∗,χ−i), and V i∗,π−i,∗,χ−i is the
unique robust state value function of agent i when the poli-
cies of other agents and adversaries are given by π−i and
χ−i. The vi∗ satisfies

[vec−1(vi∗)](s) = max
πi

min
χi

f is(v
i∗, πi, π−i, χi, χ−i),

(41)
where f is is defined for player i in (20) as

f is(v
i, πi, π−i, χi, χ−i) =

∑
ρ∈Ps

χ(ρ|s)
∑
a∈A

π(a|ρ)

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a)[vec−1(vi)](s′)

)
.

Note that σ−is includes both π−i and χ−i for any i ∈ I, and
the existence of V i∗,π−i,∗,χ−i is guaranteed by Theorem 5.
Thus, the utility function is well-defined.

Since the state set S is finite, Pis ⊆ S is a finite set for
all i ∈ N . Also, Ai is a finite set for all i ∈ N . Therefore,
∆(Ais) is compact and convex for all i ∈ I. Moreover, for
all i ∈ I, uis(σ

i
s, ·) is linear in σis and therefore continuous

and concave in σis. According to the theorem (Debreu (De-
breu 1952), Glicksberg (Glicksberg 1952), Fan (Fan 1952)),
the conditions for the existence of a Nash Equilibrium are
satisfied, hence, there exists a Nash equilibrium σ∗s for this
2n player game for any s ∈ S such that for any i ∈ I,
uis(σ

i∗
s , σ

−i∗
s ) ≥ uis(σis, σ−i∗s ) for any σis.

Denote the agent and adversary policies as (π∗, χ∗) that
are constructed following Eq. (38) and Eq. (39) by plug-
ging in the Nash equilibrium (σi∗s , σ

−i∗
s ). Substituting the

(π∗, χ∗) into uis(σ
i∗
s , σ

−i∗
s ) ≥ uis(σis, σ−i∗s ) and plugging in

the definition of the utility functions, for any i = 1, 2, ..., n,
it holds that

f is(v
i∗, πi∗, π−i∗, χi∗, χ−i∗) ≥ f is(vi∗, πi, π−i∗, χi∗, χ−i∗),

(42)
for any πi. Also, for any i = 1, 2, ..., n, it holds that

f is(v
i∗, πi∗, π−i∗, χi∗, χ−i∗) ≤ f is(vi∗, πi∗, π−i∗, χi, χ−i∗),

(43)
for any χi. Therefore,

max
πi

min
χi

f is(v
i∗, πi, π−i∗, χi, χ−i∗)

=f is(v
i∗, πi∗, π−i∗, χi∗, χ−i∗). (44)

According to Corollary 5.1, for any πi, it holds that

V iπi∗,π−i∗,χi∗,χ−i∗(s) ≥ V iπi,π−i∗,χi∗,χ−i∗(s), (45)



Also, for any χi, it holds that

V iπi∗,π−i∗,χi∗,χ−i∗(s) ≤ V iπi∗,π−i∗,χi,χ−i∗(s). (46)

Thus, the stage-wise equilibrium defined in Definition 7 ex-
ists for any s ∈ S.

C.3 Non-existence of Robust Nash Equilibrium
Theorem 6 shows the existence of the stage-wise equilib-
rium for any s ∈ S. For the classic Markov game (Fink
1964) and Markov game with reward/ transition uncertain-
ties (Kardeş, Ordóñez, and Hall 2011; Nilim and El Ghaoui
2005; Iyengar 2005), this result is naturally extended to be
the existence of the Nash equilibrium policy because all
agents’ and adversaries’ policies are based on the current
true state. If the stage-wise equilibrium exists for any state
s ∈ S , then a Nash equilibrium can be constructed by
taking the policies for each state s from their correspond-
ing stage-wise equilibriums for state s (Fink 1964; Kardeş,
Ordóñez, and Hall 2011; Nilim and El Ghaoui 2005; Iyen-
gar 2005). However, this natural extension cannot be used
for our SAMG problem because the agent policy is based
on the perturbed state instead of the true state. The prob-
lem is the agent’s stage-wise equilibrium in one state may
not be consistent with its stage-wise equilibrium in a differ-
ent state. We illustrate this idea in the following theorem to
show that the robust Nash equilibrium does not always exist
for an SAMG.
Theorem 2 (Non-existence of Robust Nash Equilibrium).
For an SAMG with finite state and finite action spaces, the
robust Nash equilibrium defined in Definition 3 does not al-
ways exist.

Proof. We prove this theorem by showing that the following
two-agent two-state game in Fig. 6 does not have a robust
Nash equilibrium. The two-agent two-state game in Fig. 6 is

𝑠! 𝑠"
𝑎! = 𝑎"
𝑟 = 1

𝑎! = 𝑎"
𝑟 = 0

𝑎! ≠ 𝑎"
𝑟 = 1

𝑎! ≠ 𝑎"
𝑟 = 0

Figure 6: A new two-agent two-state game example. Agents
get reward 1 at state s1 if they choose the same action.
Agents get reward 1 at state s2 if they choose different ac-
tions.

basically the same as the two-agent two-state game in Fig. 5.
The only difference is we changed the state transition for the
state s1. The new state transition functions for the state s1
are

p(s′ = s2|s = s1, a
1 6= a2) = 1,

p(s′ = s1|s = s1, a
1 = a2) = 1. (47)

We first consider the stage-wise equilibriums for each state.
For state s1, the stage-wise equilibrium requires Pr(a1t =

a2t ) = 1 for all t. One example of the agent policy is

π1(a1|s1) = π1(a1|s2) = π2(a1|s1) = π2(a1|s2) = 1.
Note that the agent should have a policy for both s1 and
s2 even when considering the state-wise equilibrium for the
state s1 (This means the current true state is s1). This is
because the adversary can perturb each agent’s state ob-
servation to be s2. There is no requirement for the ad-
versary policy in the state-wise equilibrium because when
Pr(a1t = a2t ) = 1, the true state never transits. The state
value for s1 is V (s1) = 100.

Similarly, for state s2, the stage-wise equilibrium requires
Pr(a1t 6= a2t ) = 1 for all t. One example of the agent policy
is π1(a1|s1) = π1(a1|s2) = π2(a2|s1) = π2(a2|s2) = 1.
There is no requirement for the adversary policy in the state-
wise equilibrium of s2. The state value for s2 is V (s2) =
100.

Since the stage-wise equilibriums have conflict require-
ments for the agent policy in s1 and s2, there is no agent
policy satisfying the requirements of the stage-wise equilib-
riums in both s1 and s2 at the same time. Therefore, there
is no robust Nash equilibrium for agents in this two-agent
two-state game.

We draw a similar conclusion with the Theorem 1. It is
not always possible to find a policy to be the stage-wise
equilibrium for all the states. When facing adversarial state
perturbations, we have to make trade-offs among different
states. Therefore, the traditional solution concepts of an op-
timal agent policy and the robust Nash equilibrium cannot
be used for an SAMG.

C.4 Existence of Robust Agent Policy
We need to consider a new objective that is not state-
dependent. Therefore, we propose a new objective, the
worst-case expected state value, in Definition 4 as

Es0∼Pr(s0)

[
Vπ,χ∗(π)(s0)

]
,

where Pr(s0) is the probability distribution of the initial
state. In this section, we show the existence of a robust agent
policy to maximize the worst-case expected state value. We
first introduce two lemmas for this proof.

Denote pπ,χ,s0(st) as the probability of reaching state
st given the agent policy π, adversary policy χ, and ini-
tial state s0. Let pπ,χ,s0(s0) = 1. The connection between
pπ,χ,s0(st+1) and pπ,χ,s0(st) is:

pπ,χ,s0(st+1) =∑
st∈S

∑
at∈A

∑
ρt∈P

p(st+1|st, at)π(at|ρt)χ(ρt|st)pπ,χ,s0(st).

(48)

For a concise representation, we omit the subscript st of
Pst in this section. Consider the function

gs0t (π, χ) =
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)×

π(at|ρt)χ(ρt|st)γtrt+1(st, at). (49)

Lemma 7. The function gs0t is continuous on ∆(A)×∆(P)
for any t = 0, 1, 2, ..., n where n ∈ N+.



Proof. To prove the continuity, we construct some equiv-
alent vectors as follows. We define a vector ~π ∈ R|A||P|
and ~π(a, ρ) = π(a|ρ) for a ∈ A, ρ ∈ P , and a vector
~χ ∈ R|P||S| where ~χ(ρ, s) = χ(ρ|s) for ρ ∈ P, s ∈ S.
And a vector constant ~r ∈ R|S||A| where ~r(s, a) = r(s, a).

~π> = [π(a1|ρ1), · · · , π(a|A||ρ1), π(a2|ρ1), · · · , π(a|A||ρ|P|)]
~χ> = [χ(ρ1|s1), · · · , χ(ρ|P||s1), χ(ρ2|s1), · · · , χ(ρ|P||s|S|)]
~pt = [pπ,χ,s0(st = s1), · · · , pπ,χ,s0(st = s|S|)] (50)

Note that when ρ /∈ Ps, then the entry χ(ρ|s) = 0. ~pt ∈
R|S| can be expressed as a linear combination of ~pt−1, ~π and
~χ according to (48). Let’s first consider the case t = 0,

gs00 (π, χ) =
∑
a0∈A

∑
ρ0∈P

π(a0|ρ0)χ(ρ0|s0)r(s0, a0) (51)

Function gs00 can be expressed as a linear combination of
~r, ~π and ~χ. We consider the general case

gs0t (π, χ) =
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)×

π(at|ρt)χ(ρt|st)γtrt+1(st, at). (52)
Function gs0t can be expressed as a linear combination of

~r, ~pt, ~π and ~χ. Therefore, gs0t is continuous on ∆(A)×∆(P)
for any t = 0, 1, 2, ..., n where n ∈ N+.

Lemma 8. For any s0 ∈ S, the series {
∑n
t=0 g

s0
t (π, χ)},

n = 1, 2, ..., converges uniformly on ∆(A)×∆(P).

Proof. Consider Ms0
t (π, χ) = γtRmax, where Rmax is the

largest absolute value of the rewards. We can check that
|gs0t (π, χ)| ≤Ms0

t (π, χ) for t ≥ 0 as follows.
|gs0t (π, χ)|

=

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)π(at|ρt)χ(ρt|st)γtrt+1(st, at)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)π(at|ρt)χ(ρt|st)γtRmax
∣∣∣∣∣∣

=γtRmax ×

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)π(at|ρt)χ(ρt|st)

∣∣∣∣∣∣
=γtRmax ×

∣∣∣∣∣∣
∑
st∈S

∑
at∈A

∑
ρt∈P

Pr(st, at, ρt | s0, π, χ)

∣∣∣∣∣∣
=γtRmax × 1 = Ms0

t (π, χ). (53)
Meanwhile,

∞∑
t=0

Ms0
t (π, χ) =

∞∑
t=0

γtRmax =
Rmax

1− γ
, (54)

so
∑
gs0t converges uniformly on ∆(A)×∆(P) according

to the Weierstrass M-test in Theorem 7.10 of (Rudin et al.
1976).

Lemma 8 shows the series {
∑n
t=0 g

s0
t (π, χ)}, n = 1,

2, ..., converges uniformly on ∆(A)×∆(P) for any s0 ∈ S.
In the following lemma, we show

∑∞
t=0 g

s0
t (π, χ) is contin-

uous on ∆(A)×∆(P) for any s0 ∈ S. Denote hs0(π, χ) =∑∞
t=0 g

s0
t (π, χ).

Lemma 9. The function hs0 is continuous on ∆(A)×∆(P)
for any s0 ∈ S.

Proof. Consider hs0n (π, χ) =
∑n
t=0 g

s0
t (π, χ) for n ∈

N+. Since hs0n is a linear combination of {gs0t }t=0,1,2,··· ,n
and gs0t is continuous on ∆(A) × ∆(P) for any t =
0, 1, 2, · · · , n according to Lemma 7, the sequence {hs0n }
is a sequence of continuous functions on ∆(A) × ∆(P).
Meanwhile, hs0n → hs0 uniformly on ∆(A)×∆(P) for any
s0 ∈ S according to Lemma 8, therefore hs0 is continuous
on ∆(A) ×∆(P) for any s0 ∈ S according to the uniform
limit theorem in Theorem 7.12 of (Rudin et al. 1976).

Finally, we show the existence of the robust agent policy
to maximize the worst-case expected state value in the fol-
lowing theorem.
Theorem 3. For an SAMG with finite state and finite action
spaces, there exists a robust agent policy π to maximize the
worst-case expected state value defined in Definition 4

Proof. According to Proposition 2, finding an agent policy
π to maximize the worst-case expected state value under the
optimal adversary for π is equivalent to the following max-
imin problem:

max
π

F (π)

:= max
π

Es0∼Pr(s0)

[
Vπ,χ∗(π)(s0)

]
= max

π
min
χ

∑
s0

Pr(s0)Vπ,χ(s0)

= max
π

min
χ
J(π, χ), (55)

where the objective function in (55) can be expanded as fol-
lows:

J(π, χ)

= Es0∼Pr(s0) [Vπ,χ(s0)]

=
∑
s0

Pr(s0)Vπ,χ(s0)

=
∑
s0

Pr(s0)Eat∼π,ρt∼χ

[ ∞∑
t=0

γtrt+1(st, at) | s0

]

=
∑
s0

Pr(s0)

∞∑
t=0

Eat∼π,ρt∼χ
[
γtrt+1(st, at) | s0

]
(linearity of the expectation)

=
∑
s0

Pr(s0)

∞∑
t=0

∑
st∈S

∑
at∈A

∑
ρt∈P

pπ,χ,s0(st)×

π(at|ρt)χ(ρt|st)γtrt+1(st, at)

=
∑
s0

Pr(s0)

∞∑
t=0

gs0t (π, χ)



=
∑
s0

Pr(s0)hs0 . (56)

Because J(π, χ) is a linear combination of {hs0}s0∈S , S
is finite, and hs0 is continuous on ∆(A) × ∆(P) for any
s0 ∈ S according to Lemma 9, the objective function
J(π, χ) =

∑
s0

Pr(s0)hs0 is continuous on ∆(A)×∆(P).
Consider the function F (π) = minχ J(π, χ). Since the ad-
versary policy space ∆(P) is compact, the function F is
continuous in π. Meanwhile, the agent policy space ∆(A)
is closed. Therefore, there exists an agent policy π to maxi-
mize F according to the extreme value theorem.

D Implementation Detail
All hyperparameters used in experiments are listed in ta-
ble 4.

D.1 Environments
We have tested our algorithm in environments provided
by (Lowe et al. 2017) as shown in Fig. 7.

Cooperative navigation (CN) This is a cooperative task.
There are 3 agents and 3 landmarks. Agents want to
occupy/cover all the landmarks. They need to cooperate
through physical actions about their preferred landmark to
cover. Also, they will be penalized when collisions happen.

Exchange target (ET) This is a cooperative task. There
are 2 agents and 3 landmarks. Each agent needs to get to
its target landmark, which is known only by another agent.
They have to learn communication and get to landmarks.
Besides, both of them are generous agents that pay more
attention to helping others, i.e. rewarded more if the other
agent gets closer to the target landmark.

Keep-away (KA) This is a competitive task. There is 1
agent, 1 adversary, and 1 landmark. The agent knows the
position of the target landmark and wants to reach it. The
adversary does not know the target landmark and wants to
prevent the agent from reaching the target by pushing them
away or occupying the target temporarily.

Physical deception (PD) This is a mixed cooperative and
competitive task. There are 2 collaborative agents, 2 land-
marks including a target, and 1 adversary. Both the collab-
orative agents and the adversary want to reach the target,
but only collaborative agents know the correct target. The
collaborative agents should learn a policy to cover all land-
marks so that the adversary does not know which one is the
true target.

Covert communication (CC) This is a mixed cooperative
and competitive task. There are 2 agents, Alice and Bob, and
1 adversary Eve. This environment is from symmetric-key
encryption considering eavesdropping attacks in cryptogra-
phy. Alice and Bob want to transfer a plaintext while Eve can
eavesdrop on it. Alice and Bob need to encode their message
to ciphertext using a randomly generated secret key.

D.2 Baselines
We compare the performance of our algorithm with MAD-
DPG (Lowe et al. 2017), M3DDPG (Li et al. 2019), and
MAPPO (Yu et al. 2021a) and follow their open-source im-
plementation. We have a brief introduction of these methods
in the following sections. There is no robustness considered
in MADDPG and MAPPO. The M3DDPG considers the ro-
bustness of training partner’s policies, but it does not con-
sider state uncertainty. The MAPPO is the multi-agent ver-
sion of the Proximal Policy Optimization (PPO), a popular
policy gradient algorithm. Because MAPPO only works in
fully cooperative tasks, we only report its results in cooper-
ative navigation and exchange target. Note that MAPPO is
also used in (Guo et al. 2020) but they do not provide an
open-source implementation. Therefore, we select the latest
implementation in (Yu et al. 2021a) with the open-source
code.

D.3 Multi-Agent Deep Deterministic Policy
Gradient (MADDPG)

It is difficult to apply single-agent RL algorithms directly to
the multi-agent case because the environment’s state transi-
tion is also influenced by the policy of other agents and it is
non-stationary from a single agent’s view. To alleviate this
problem and stabilize training, the MADDPG algorithm is
proposed using a centralizedQ function that has global state
and global action information (Lowe et al. 2017). It assumes
all agents are self-interested and every agent’s objective is
to maximize its own total expected return. The objective for
agent i is J(θi) = E[Ri] and its gradient is

∇θiJ(θi) = (57)

Ex,a∼D
[
∇θiµi(oi)∇aiQi(x, a1, ..., an)|ai=µi(oi)

]
,

where Qi(x, a1, ..., an) is a centralized action-value func-
tion, x = (o1, . . . , on), and oi represents agent i’s observa-
tion. The experience replay buffer D contains transition ex-
perience x, a1, ..., an,x′, r1, ..., rn to decorrelate data. The
centralized Qi can be trained using the Bellman loss:

L(θi) = Ex,a,r,x′∼D[y −Qi(x, a1, ..., an)]2,

y = ri + γQi′(x′, a1′, ..., an′)|aj′=µj′(oj), (58)

whereQi′ is the target network whose parameters are copied
from Q with a delay to stabilize the moving target. Note that
this algorithm adopts a centralized training and decentral-
ized execution paradigm. When testing, each agent can only
access its local observation to select actions.

In M3DDPG (Li et al. 2019), the uncertainty from
the training partner’s policies is considered: all other
partners are considered as adversaries that select ac-
tions to minimize the total expected return of the train-
ing agent. In other words, when updating both actor and
critic, they select training partner’s actions by aj 6=i =
arg minaj 6=i Qi(x, a1, ..., an).

D.4 Gradient Descent Ascent (GDA)
Gradient Descent Ascent (GDA) (Lin, Jin, and Jordan 2020)
is currently one widely-used algorithm for solving the fol-



Parameter RMARL M3DDPG MADDPG MAPPO
optimizer for the critic network Adam Adam Adam Adam
learning rate for agent policy π 0.01 0.01 0.01 0.0007
learning rate for adversary policy χ 0.001 / / /
discount factor 0.95 0.95 0.95 0.99
replay buffer size 106 106 106 /
activation function Relu Relu Relu Relu
number of hidden layers 2 2 2 1
number of hidden units per layer 64 64 64 64
number of samples per minibatch 1024 1024 1024 1
target network update coefficient τ 0.01 0.01 0.01 /
GDA optimizer steps 20 / / /
radius d 1.0 / / /
uncertainty level λ 0.5 0.5 0.5 0.5
upper boundary u 1.0 1.0 1.0 1.0
lower boundary l -1.0 -1.0 -1.0 -1.0
episodes in training 10k 10k 10k 10k
time steps in one episode 25 25 25 25

Table 4: Hyperparameters for our RMARL algorithm and the baselines.

lowing minimax optimization problem:

min
x

max
y

f(x, y). (59)

GDA simultaneously performs gradient descent update on
the variable x and gradient ascent update on the variable y
according to (60) with step sizes ηx and ηy .

xt+1 = xt − ηx∇xf(xt, yt),

yt+1 = yt + ηy∇yf(xt, yt). (60)

It has a variety of variants to accommodate different
types of geometries of the minimax problem, such as
convex-concave geometry, nonconvex-concave geometry,
nonconvex-nonconcave geometry, etc.

D.5 Cooperative Navigation With 6 Agents

CN with 6 agents

MADDPG w/χ∗ µ -3405.274
σ 66.18

M3DDPG w/χ∗ µ -3452.22
σ 80.16

MAPPO w/χ∗ µ -3121.90
σ 18.49

RMARL w/χ∗ µ -3079.37
σ 16.16

Table 5: Mean episode rewards of 2000 episodes during
testing under well-trained adversarial state perturbations in
the cooperative navigation environment with 6 agents. Our
RMARL policy achieves up to 9.57% higher mean episode
reward than the baselines with well-trained χ∗.

We compare our RMARL algorithm with baselines in the
cooperative navigation scenario with more agents added.
The original cooperative navigation environment has 3

agents and the training results are shown in Fig. 2. We show
the training results with 6 agents in Fig. 8. After increasing
the total number of agents in the environment, our RMARL
algorithm still gets higher mean episode rewards than base-
lines under adversarial state perturbations.

We also test the learned policies in the 6-agent Coopera-
tive Navigation (CN) environment to show our RMARL pol-
icy is more robust under adversarial state perturbations. Dur-
ing testing, the mean episode rewards are averaged across
2000 episodes and 10 test runs for each algorithm. We put
all the well-trained agents using different algorithms into the
6-agent CN environment with well-trained adversary poli-
cies χ∗ to perturb states. The result is shown in Table 5. Our
RMARL policy achieves up to 9.57% higher mean episode
reward than the baselines with well-trained adversarial state
perturbations. The result shows that our RMARL algorithm
achieves higher robustness for a multi-agent system under
adversarial state perturbations.

E Discussions and Future Work
In this section, we add several discussions of our work as a
first attempt to study the SAMG problem formally. We also
point out several future directions for the SAMG problem.

E.1 GDA Convergence
In Alg. 1, we use Gradient Descent Ascent (GDA) opti-
mizer (Lin, Jin, and Jordan 2020) to update parameters for
each agent’s actor network and the adversary network. Each
agent updates the actor network to maximize the worst-case
expected state value in Definition 4, while the correspond-
ing adversary updates the adversary network to minimize the
worst-case expected state value. How to solve a non-convex
non-concave minimax problem is a very challenging and not
yet well-solved problem. To the best of our knowledge, the
GDA optimizer is currently one of the most widely used
and accepted optimizers for this type of problem, though it



a) Cooperative navigation

?

agent 1 agent 2

adversary

a) Physical deception

landmar
k

c) Keep-way

agent 1

adversary

?

agent 1

agent 2

b) Exchange target

agent 1

agent 2
agent 3

Bob

c) Covert communication

Alice

Eve

?

"Secret"

Figure 7: Some environments to test our algorithm, including a) Cooperative navigation (CN) b) Exchange target (ET) c)
Keep-away (KA) d) Physical deception (PD) e) Covert Communication (CC).

Figure 8: Our RMARL algorithm compared with baselines
during the training process in the cooperative navigation sce-
nario with 6 agents added. Our algorithm gets higher mean
episode rewards in the environment with an increased agent
number.
is not guaranteed to always converge (Jin, Netrapalli, and
Jordan 2020; Razaviyayn et al. 2020; Lin, Jin, and Jordan
2020). Our robust MARL (RMARL) algorithm with GDA
optimizer shows performance improvement in terms of pol-
icy robustness in our experiments. Note that we only use the
GDA optimizer as a tool in our algorithm by leveraging the
existing literature on solving non-convex non-concave mini-
max problems. Future advances of numerical algorithms and
solvers for this kind of minimax problem will also benefit
our algorithm by replacing the GDA optimizer with new ad-
vances.

E.2 Non-Markovian Policy
In this work, we give the first attempt to focus on the Marko-
vian policy under adversarial state perturbations. Dealing
with the non-Markovian policy will significantly compli-
cate the problem. We are aware of the suboptimality of

Markovian policies, however, considering the computational
cost of the non-Markovian policy of MARL, we decide
to focus on Markovian policies in this work for computa-
tional tractability. Moreover, as shown in Proposition 3, our
SAMG problem is different from a Dec-POMDP. Consider-
ing a non-Markovian policy based on the observation-action
history may not give an advantage to the agents. For exam-
ple, for the two-agent two-state game in Fig. 5, if the ad-
versary randomly perturbs the state with χi(s1|s2) = 0.5
for i = 1, 2, then the agents still only have a 50% chance
to guess the true state even with observation-action history.
Considering another example for the two-agent two-state
game in Fig. 5, if the adversary perturbs all states to state
s1 with χi(s1|s2) = 1 and χi(s1|s1) = 1 for i = 1, 2, then
the agents cannot get extra information for the true state even
with observation-action history. We leave the formal analy-
sis of non-Markovian, non-stationary policy as future work.

E.3 Non-collaborative Game
In the problem formulation, we consider a collaborative
game, where all agents share one stage-wise reward func-
tion. The new objective for the SAMG, the worst-case ex-
pected state value under state perturbations, is well-defined
as proved in Theorem 3. For non-collaborative games, if
each agent has its own reward function, and adversary i
wants to minimize the total expected return of agent i, then
for a fixed agent policy π, the n adversaries are playing a
Markov game. In this case, only the Nash equilibrium exists
among n adversaries, but optimal adversary policy may not
exist. Therefore, for non-collaborative games, the worst-case
expected state value is not well-defined. Even though the
worst-case expected state value is not well-defined for non-
collaborative games, the experiment results of the compet-
itive games and mixed-cooperative-competitive game envi-
ronments in Table 2 and Table 3 also show that our RMARL



algorithm can get larger mean episode rewards in non-
collaborative games under adversarial state perturbations.
Hence, our RMARL algorithm can increase the robustness
of policies of non-collaborative games in empirical experi-
ments. We leave the formal analysis of the non-collaborative
games as future work.


	1 Introduction
	2 Related Work
	3 State-Adversarial Markov Game (SAMG)
	4 Solution Concepts
	4.1 Optimal Adversary Policy
	4.2 Optimal Agent Policy
	4.3 Robust Nash Equilibrium
	4.4 Robust Agent Policy

	5 Robust MARL Algorithm
	6 Experiments
	6.1 Baselines
	6.2 Comparison Results

	7 Conclusion
	A Comparison with Dec-POMDP and Markov Games
	A.1 Comparison with Dec-POMDP
	A.2 Comparison with Markov Games

	B Two-Agent Two-State Game
	B.1 Optimal Agent Policy Without Adversaries
	B.2 A Stochastic Policy With Adversaries
	B.3 Deterministic Policies With Adversaries
	B.4 Optimal Adversary Policy
	B.5 Optimal Agent Policy With Adversaries

	C Stage-wise Equilibrium, Robust Nash Equilibrium, and Robust Agent Policy
	C.1 Unique Robust State Value Function
	C.2 Existence of the Stage-wise Equilibrium
	C.3 Non-existence of Robust Nash Equilibrium
	C.4 Existence of Robust Agent Policy

	D Implementation Detail
	D.1 Environments
	D.2 Baselines
	D.3 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
	D.4 Gradient Descent Ascent (GDA)
	D.5 Cooperative Navigation With 6 Agents

	E Discussions and Future Work
	E.1 GDA Convergence
	E.2 Non-Markovian Policy
	E.3 Non-collaborative Game


